K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2023

Vì Om là phân giác của \(\widehat{xOy}\)

\(\Rightarrow\widehat{IOE}=\widehat{IOF}=\dfrac{1}{2}\widehat{EOF}\)

Vì \(\left\{{}\begin{matrix}IE\perp Ox\\IF\perp Oy\end{matrix}\right.\left(gt\right)\Rightarrow\widehat{IEO}=\widehat{IFO}=90^o\)

Xét \(\Delta IOE\) và \(\Delta IOF\) có: \(\left\{{}\begin{matrix}\widehat{IEO}=\widehat{IFO}\left(=90^o\right)\\OI:chung\\\widehat{IOE}=\widehat{IOF}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta IOE=\Delta IOF\left(\text{cạnh huyền - góc nhọn}\right)\)

b) Vì \(\Delta IOE=\Delta IOF\left(cmt\right)\Rightarrow OE=OF\left(\text{2 cạnh tương ứng}\right)\)

Xét \(\Delta EOF\) có: \(OE=OF\left(cmt\right)\)

\(\Rightarrow\Delta EOF\) cân ở O

\(\Rightarrow\widehat{OEF}=\widehat{OFE}\)

Xét \(\Delta EOF\) có:

\(\widehat{EOF}+\widehat{OFE}+\widehat{OEF}=180^o\)

\(\Rightarrow2\widehat{EOI}+2\widehat{OEF}=180^o\\ \Rightarrow\widehat{EOI}+\widehat{OEF}=90^o\)

Gọi \(EF\cap OI\equiv M\)

Xét \(\Delta OME\) có: 

\(\widehat{OEF}+\widehat{EOI}+\widehat{OME}=180^o\\ \Rightarrow90^o+\widehat{OME}=180^o\\ \Rightarrow\widehat{OME}=180^o-90^o=90^o\\ \Rightarrow EF\perp Om\left(\text{đpcm}\right)\)

18 tháng 4 2023

Cho ���^xOy(0∘<���^<180∘)(0<xOy<180)��Om là tia phân giác ���^xOy. Trên tia ��Om lấy điểm I bất kì. Gọi �,�E,F lần lượt là chân đường vuông góc kẻ từ I đến ��Ox và ��Oy. Chứng minh:

a) △���=△���IOE=IOF.

b) ��⊥��EFOm.

Hướng dẫn giải:

loading...

a) Xét △���IOE và △���IOF có

�^=�^=90∘E=F=90 (giả thiết);

��OI cạnh chung;

���^=���^EOI=FOI (��Om là tia phân giác).

Vậy △���=△���IOE=IOF (cạnh huyền - góc nhọn).

b) △���=△���IOE=IOF (chứng minh trên)

⇒��=��OE=OF (hai cạnh tương ứng).

Gọi H là giao điểm của ��Om và ��EF.

Xét △���OHE và △���OHF, có

��=��OE=OF (chứng minh trên);

���^=���^EOH=FOH (��Om là tia phân giác);

OHOH chung.

Do đó △���=△���OHE=OHF (c.g.c)

⇒���^=���^OHE=FHO (hai góc tương ứng)

Mà ���^+���^=180∘OHE+FHO=180 nên ���^=���^=90∘OHE=FHO=90.

Vậy ��⊥��EFOm.

7 tháng 3 2023

giúp chúng ta được cung cấp đầy đủ các chất dinh dưỡng hơn thay vì ăn đúng 1 loại và chỉ cung cấp được mỗi chất dinh dưỡng ấy

(3 điểm) Đọc đoạn thông tin sau và trả lời các câu hỏi bên dưới: Theo thống kê của ngành Kiểm lâm, ở khu vực các tỉnh Bắc Trung Bộ, mùa cháy rừng từ tháng 4 đến hết tháng 9, cao điểm là từ tháng 6 đến tháng 8. Vì thế, lực lượng kiểm lâm khuyến cáo người dân tuyệt đối không được xử lí thực bì, đốt nương làm rẫy, đồng thời tổ chức lực lượng thường trực 24/24 canh...
Đọc tiếp

(3 điểm) Đọc đoạn thông tin sau và trả lời các câu hỏi bên dưới:

Theo thống kê của ngành Kiểm lâm, ở khu vực các tỉnh Bắc Trung Bộ, mùa cháy rừng từ tháng 4 đến hết tháng 9, cao điểm là từ tháng 6 đến tháng 8. Vì thế, lực lượng kiểm lâm khuyến cáo người dân tuyệt đối không được xử lí thực bì, đốt nương làm rẫy, đồng thời tổ chức lực lượng thường trực 24/24 canh phòng lửa rừng, phát hiện sớm điểm cháy để chữa cháy kịp thời. 

(Nguồn: https://baochinhphu.vn/print/kho-khan-chong-chay-rung-trong-mua-dich-102294890.htm truy cập ngày 20/02/2022)

a) Vì sao khu vực các tỉnh Bắc Trung Bộ mùa cháy rừng thường xảy ra từ tháng 4 đến hết tháng 9, cao điểm là từ tháng 6 đến tháng 8?

b) Nêu những nguyên nhân có thể dẫn đến cháy rừng. 

c) Cần có những biện pháp nào để hạn chế cháy rừng. 

0
13 tháng 4 2023

A. Ta có: $\angle BAD=\angle CAD$ $\angle ADB=120^{\circ}-\angle BAD=120^{\circ}-\angle CAD =$ $\angle ACD$ Vậy $AD$ là phân giác trong của $\angle A$ trong tam giác $ABC$ Do đó ta có $\frac{BD}{DC}=\frac{AB}{AC}$ (định lí phân giác) Mà $\angle A=\angle AHD$ (Do $H$ thuộc đường thẳng $AC$ là đường cao của tam giác $ABD$) $\angle HDA=180^{\circ}-\angle BDA=180^{\circ}-\angle B=120^{\circ}=\angle C$ Vậy $\frac{HD}{DC}=\frac{AD}{AC}=\frac{AB}{AC}=\frac{BD}{DC}$ Vậy $HD=BD$ và $\angle B=60^{\circ}=\angle HAD$ Do đó $\triangle AHD \cong \triangle ABD$ Vậy $\triangle ABC \cong \triangle AHD$ B. Ta có $\angle ADB=120^{\circ}-\angle BAD=120^{\circ}-\angle DAC=\angle ACD$ Lại có $AD$ là phân giác trong của $\angle A$ Do đó, ta có: $\frac{BD}{DC}=\frac{AB}{AC}=\frac{BD}{DA}$ Vậy $DC=DA$, vậy $AD$ là đường trung trực của $BH$ C. Ta có $\angle AHD = \angle B = 60^{\circ}=\angle HAC$, vậy $\triangle AHD \sim \triangle ACH$ Do đó $\dfrac{HA}{HD}= \dfrac{HC}{HA}$ Vậy $HA=HC$ D. Ta có $\angle ADB=120^{\circ}-\angle BAD=120^{\circ}-\angle DAC=\angle ACD$ Do đó tam giác $ABC$ cân tại $B$, ta có $DC>AB$ (Bất đẳng thức tam giác) E. Gọi $E$ là trung điểm của $CS$ thì ta có $CE=\frac{1}{2}CS$ Mà $\angle ACB=\angle AHB=90^{\circ}$, do đó $AH//CB$, ta có $\triangle AHB \sim \triangle ACB$ Vậy $\dfrac{AB}{AC}=\dfrac{HB}{BC}$ Do đó $\dfrac{HB}{AB}=\dfrac{BC}{AC}$ Vì $HEBC$ là hình bình hành nên ta có $BC=HE$ Vậy $\dfrac{HB}{AB}=\dfrac{HE}{AC}$ Lại có $\triangle HSD \sim \triangle AHC$ Vậy $\dfrac{HS}{AC}=\dfrac{HD}{AH}$ Do đó $\dfrac{HE}{AC}=\dfrac{HD+DE}{AC}=\dfrac{HD}{AC}+\dfrac{DE}{AC}$ Vì $HA=HC$ nên ta có $HD=\frac{1}{2}AC$ Vậy $\dfrac{HE}{AC}=\dfrac{1}{2}+\dfrac{DE}{AC}$ Mà $HE=\frac{1}{2}CS=\frac{1}{4}AB$ nên $\dfrac{HE}{AB}=\dfrac{1}{4}$ Do đó $\dfrac{1}{2}+\dfrac{DE}{AC}=\dfrac{1}{4}$ Vậy $\dfrac{DE}{AC}=-\dfrac{1}{4}$ Ta có $\triangle BDS \sim \triangle ACS$ Vậy $\dfrac{BD}{AC}=\dfrac{DS}{CS}$ Mà $\angle B =\angle HAD=60^{\circ} =\angle SDC$ Nên tam giác $SDC$ cũng là tam giác đều với $SD=DC$ Vậy $\dfrac{BD}{AC}=\dfrac{DS}{CS}=\dfrac{1}{2}$ Do đó $DE=\frac{-1}{4}AC$, suy ra $DE$ song song với $AC$ Lại có $\angle AHB=90^{\circ}$ nên $BH$ vuông góc với $AC$ Do đó $AD$ là đường trung trực của $BH$ nên $DE$ cũng là đường trung trực của $BH$ Vậy ta được $A,D,E$ thẳng hàng Chúc bạn học tốt! 🙂

23 tháng 4 2023

Kẻ ��⊥��IEAD (với �∈��EAD).

Gọi ��Ax là tia đối của tia ��AB.

Vì ���^BAC và ���^CAx là hai góc kề bù mà ���^=120∘BAC=120 nên ���^=60∘CAx=60 (1) 

Ta có ��AD là phân giác của ���^⇒���^=12���^=60∘BACDAC=21BAC=60 (2)

Từ (1) và (2) suy ra ��AC là tia phân giác của ���^DAx

⇒��=��IH=IE (tính chất tia phân giác của một góc) (3)

Vì ��DI là phân giác của ���^ADC nên ��=��IK=IE (tính chất tia phân giác của một góc) (4)

Từ (3) và (4)(4) suy ra ��=��IH=IK.

17 tháng 3 2023

 Vai trò của thoát hơi nước đối với đời sống thực vật:

+ Là động lực đầu trên đóng vai trò như lực kéo giúp vận chuyển dòng nước và các chất khoáng hòa tan từ rễ lên lá đến các bộ phận khác của cây trên mặt đất.

+ Khí khổng mở rộng trong quá trình thoát hơi nước tạo điều kiện cho khí CO2 đi vào bên trong tế bào lá, cung cấp nguyên liệu cho quá trình quang hợp và giải phóng O2 ra ngoài không khí.

+ Hơi nước thoát ra ngoài mang theo một lượng nhiệt nhất định giúp hạ nhiệt độ của lá, bảo vệ lá cây vào những ngày nắng nóng, đảm bảo cho các quá trình sinh lí diễn ra bình thường.

Đứng dưới bóng cây mát hơn đứng dưới mái che làm bằng vật liệu xây dựng vì:

- Khoảng 98% lượng nước mà cây hút từ rễ sẽ thoát ra ngoài môi trường qua quá trình thoát hơi nước qua lá. Chính lượng nước này sẽ giúp lạ hạ nhiệt độ ở bề mặt lá và tán cây, thông thường là thấp hơn khoảng 5-10 độ C so với môi trường trống trơn.

- Bên cạnh đó, quá trình quang hợp ở cây xanh sẽ giúp hấp thụ khí CO2��2, thải khí O2�2 nên giúp chúng ta dễ thở hơn. Không chỉ vậy, tán lá ở thực vật còn có khả năng hấp thụ khí độc, lọc bụi nên khi đứng dưới tán cây, ta sẽ cảm thấy vừa mát mẻ, vừa dễ chịu.

Trong khi đó, mái che bằng vật liệu xây dựng không hề có được những khả năng này, ngược lại, chúng còn hấp thụ nhiệt và khiến cho phần không gian phía dưới càng thêm bí bách.

 

 

27 tháng 10 2023

- Thoát hơi nước có vai trò: tạo động lực cho vận chuyển nước và chất khoáng trong cây; giúp lá cây không bị đốt nóng dưới ánh nắng mặt trời; trao đổi khí giữa cây và môi trường.

- Khi đứng dưới bóng cây thấy mát hơn đứng dưới mái che bằng vật liệu xây dựng vì:

+ Cây xanh có khả năng thoát hơi nước. Ngồi dưới bóng cây có hơi nước thoát ra từ lá cây, có cây che bóng mát nên cảm thấy mát mẻ, dễ chịu hơn ngồi dưới mái che bằng vật liệu xây dựng. 

+ Vật liệu xây dựng, thông thường bao gồm các loại mái sắt thép, tôn nhựa lại thường có cơ chế bức xạ nhiệt trực tiếp với ánh sáng mặt trời nên hấp thụ nhiệt lớn. 

18 tháng 4 2023

Ta có D thuộc phân giác của �^A;

��⊥��DHAB��⊥��DKAC ⇒��=��DH=DK (tính chất tia phân giác của một góc).

Gọi G là trung điểm của ��BC.

Xét △���BGD và △���CGD, có

���^=���^=90∘BGD=CGD=90 (��DG là trung trực của ��BC ),

��=��BG=CG (già thiết),

��DG là cạnh chung.

Do đó △���=△���BGD=CGD (hai cạnh góc vuông)

⇒��=��BD=CD (hai cạnh tương ứng).

Xét △���BHD và △���CKD, có

���^=���^=90∘BHD=CKD=90 (giả thiết);

��=��DH=DK (chứng minh trên);

��=��BD=CD (chứng minh trên).

Do đó △���=△���BHD=CKD (cạnh huyền - cạnh góc vuông)

⇒��=��BH=CK (hai cạnh tương ứng).

Ta có DD thuộc phân giác của \widehat{A}A;

D H \perp A BDHABD K \perp A CDKAC \Rightarrow D H=D KDH=DK (tính chất tia phân giác của một góc).

Gọi GG là trung điểm của BCBC.

Xét \triangle B G DBGD và \triangle C G DCGD, có

\widehat{B G D}=\widehat{C G D}=90^{\circ}BGD=CGD=90 (DGDG là trung trực của B CBC ),

BG=CGBG=CG (già thiết),

DGDG là cạnh chung.

Do đó \triangle B G D=\triangle C G DBGD=CGD (hai cạnh góc vuông)

\Rightarrow B D=C DBD=CD (hai cạnh tương ứng).

Xét \triangle B H DBHD và \triangle C K DCKD, có

\widehat{B H D}=\widehat{C K D}=90^{\circ}BHD=CKD=90 (giả thiết);

D H=D KDH=DK (chứng minh trên);

B D=C DBD=CD (chứng minh trên).

Do đó \triangle B H D=\triangle C K DBHD=CKD (cạnh huyền - cạnh góc vuông)

\Rightarrow B H=C KBH=CK (hai cạnh tương ứng).

11 tháng 3 2023

Phương trình quang hợp:

quang hợp olm

Từ phương trình ta thấy quang hợp lấy CO2 làm nguyên liệu và giải phóng ra ngoài môi trường khí O2, do đó, cây xanh có vai trò quan trọng trong điều hoà không khí: giúp cân bằng lượng khí CO2 và O2 trong khí quyển.

16 tháng 3 2023

quang hợp olm

Từ phương trình ta thấy quang hợp lấy CO2 làm nguyên liệu và giải phóng ra ngoài môi trường khí O2, do đó, cây xanh có vai trò quan trọng trong điều hoà không khí: giúp cân bằng lượng khí CO2 và O2 trong khí quyển.

9 tháng 4 2023

loading...

Gọi D là giao điểm của ��AG và ��⇒��=��BCDB=DC.

Ta có ��=23��BG=32BE��=23��CG=32CF (tính chất trọng tâm).

Vì ��=��BE=CF nên ��=��⇒△���BG=CGBCG cân tại G

⇒���^=���^GCB=GBC

Xét △���BFC và △���CEB có ��=��CF=BE (giả thiết);

���^=���^GCB=GBC (chứng minh trên);

��BC là cạnh chung.

Do đó △���=△���BFC=CEB (c.g.c)

⇒���^=���^FBC=ECB (hai góc tưong ứng)

⇒△���ABC cân tại �⇒��=��AAB=AC.

Từ đó suy ra △���=△���ABD=ACD (c.c.c)

⇒���^=���^ADB=ADC. (hai góc tương ứng)

Mà ���^+���^=180∘⇒���^=���^=90∘⇒��⊥��ADB+ADC=180ADB=ADC=90ADBC hay ��⊥��AGBC.

17 tháng 4 2023

a)�)

Ta có : BE là đưng trung tuyến cnh ACTa có : BE là đường trung tuyến cạnh AC

và : CF là đưng trung tuyến cnh ABvà : CF là đường trung tuyến cạnh AB

AB=ACΔABCcân tiA⇒��=��⇒Δ���cân tại�

Ni AGNối AG

Xét ΔABC có BE và CF là 2 đưng trung tuyến ct nhau ti GXét ΔABC có BE và CF là 2 đường trung tuyến cắt nhau tại G

G là trng tâm ΔABC⇒G là trọng tâm ΔABC

và : AG là đưng trung tuyến ng vi cnh BCvà : AG là đường trung tuyến ứng với cạnh BC

ΔABC cân ti A nên đưng trung tuyến AG cũng là đưng cao => AG ⊥ BCΔABC cân tại A nên đường trung tuyến AG cũng là đường cao => AG ⊥ BC 

 

image

 

image  

a) Ta có DM=DG \Rightarrow GM=2 GDDM=DGGM=2GD.

Ta lại có GG là giao điểm của BDBD và CE \Rightarrow GCEG là trọng tâm của tam giác ABCABC

\Rightarrow BG=2 GDBG=2GD.

Suy ra BG=GMBG=GM.

Chứng minh tương tự ta được CG=GNCG=GN.

b) Xét tam giác GMNGMN và tam giác GBCGBC có GM=GBGM=GB (chứng minh trên);

\widehat{MGN}=\widehat{BGC}MGN=BGC (hai góc đối đỉnh);

GN=GCGN=GC (chứng minh trên).

Do đó \triangle GMN=\triangle GBCGMN=GBC (c.g.c)

\Rightarrow MN=BCMN=BC (hai cạnh tương ứng).

Theo chứng minh trên \triangle GMN=\triangle GBC \Rightarrow \widehat{NMG}=\widehat{CBG}GMN=GBCNMG=CBG (hai góc tương ứng).

Mà \widehat{NMG}NMG và \widehat{CBG}CBG ờ vị trí so le trong nên MNMN // BCBC.

20 tháng 4 2023

a) Ta có ��=��⇒��=2��DM=DGGM=2GD.

Ta lại có G là giao điểm của ��BD và ��⇒�CEG là trọng tâm của tam giác ���ABC

⇒��=2��BG=2GD.

Suy ra ��=��BG=GM.

Chứng minh tương tự ta được ��=��CG=GN.

b) Xét tam giác ���GMN và tam giác ���GBC có ��=��GM=GB (chứng minh trên);

���^=���^MGN=BGC (hai góc đối đỉnh);

��=��GN=GC (chứng minh trên).

Do đó △���=△���GMN=GBC (c.g.c)

⇒��=��MN=BC (hai cạnh tương ứng).

Theo chứng minh trên △���=△���⇒���^=���^GMN=GBCNMG=CBG (hai góc tương ứng).

Mà ���^NMG và ���^CBG ờ vị trí so le trong nên ��MN // ��BC.

17 tháng 4 2023

Ta có BF = 2BE (giả thiết). 

=>BE = EF.

Mà BE = 2ED nên EF = 2ED.

Do đó ED = DF.

=>D là trung điểm của EF.

Khi đó CD là đường trung tuyến của ∆CEF.

Vì K là trung điểm CF (giả thiết).

Nên EK cũng là đường trung tuyến của ∆CEF.

∆CEF có hai đường trung tuyến CD và EK cắt nhau tại G.

Khi đó G là trọng tâm của ∆CEF.

Vì G là trọng tâm của ∆CEF nên GCDC=23����=23 và GKGE=12����=12 (tính chất trọng tâm).

Ta có GKGE=12����=12

Suy ra GEGK=2����=2.

Ta có BF = 2BE (giả thiết). 

=>BE = EF.

Mà BE = 2ED nên EF = 2ED.

Do đó ED = DF.

=>D là trung điểm của EF.

Khi đó CD là đường trung tuyến của ∆CEF.

Vì K là trung điểm CF (giả thiết).

Nên EK cũng là đường trung tuyến của ∆CEF.

∆CEF có hai đường trung tuyến CD và EK cắt nhau tại G.

Khi đó G là trọng tâm của ∆CEF.

Vì G là trọng tâm của ∆CEF nên GCDC=23����=23 và GKGE=12����=12 (tính chất trọng tâm).

Ta có GKGE=12����=12

Suy ra GEGK=2����=2.