giúp em bài cuối thôi em cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Số 28 . Gthich : 28 x 3 - 2 = 82 ( 82 là đảo ngược của 28 )
b ) Số tiếp theo là 181 . Gthich :
5 + 11 = 16
16 + 33 = 49
49 + 55 = 104
104 + 77 = 181
( Khoảng cách giữa 2 số là khoảng cách phía trc phép đó cộng thêm 22 đơn vị )
d; \(\dfrac{2x-1}{12}\) = \(\dfrac{5}{3}\)
2\(x\) - 1 = \(\dfrac{5}{3}\).12
2\(x\) - 1 = 20
2\(x\) = 20 + 1
2\(x\) = 21
\(x\) = 21 : 2
\(x=\dfrac{21}{2}\)
Vậy \(x=\dfrac{21}{2}\)
e; \(\dfrac{x}{3}\) - \(\dfrac{1}{4}\) = \(\dfrac{-5}{6}\)
\(\dfrac{x}{3}\) = \(\dfrac{-5}{6}\) + \(\dfrac{1}{4}\)
\(\dfrac{x}{3}\) = - \(\dfrac{7}{12}\)
\(x\) = - \(\dfrac{7}{12}\) x 3
\(x\) = - \(\dfrac{7}{4}\)
Vậy \(x\) = - \(\dfrac{7}{4}\)
b; \(\dfrac{2}{3}\) + \(\dfrac{5}{6}\): 5 - \(\dfrac{1}{18}\).(-3)2
= \(\dfrac{2}{3}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{18}\).9
= \(\dfrac{5}{6}\) - \(\dfrac{1}{2}\)
= \(\dfrac{1}{3}\)
c; \(\dfrac{1}{2}\) + \(\dfrac{-1}{6}\) + \(\dfrac{-1}{12}\) + \(\dfrac{-1}{20}\) + \(\dfrac{-1}{30}\) + \(\dfrac{-1}{42}\)
= \(\dfrac{1}{2}\) - (\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\))
= \(\dfrac{1}{2}\) - (\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}-\dfrac{1}{7}\))
= \(\dfrac{1}{2}\) - (\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\))
= \(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{7}\)
= \(\dfrac{1}{7}\)
Vì A là trung điểm của OM nên
OM = 2OA = 7 x 2 = 14 (cm)
Vì B là trung điểm của ON nên
ON = 2OB = 11 x 2 = 22 (cm)
MN = ON - OM = 22 - 14 = 8 (cm)
Bạn tham khảo:
Để tính độ dài MN, ta sử dụng định lí về trung điểm:
Nếu A là trung điểm của OM và B là trung điểm của ON, thì AB sẽ là đường chính giữa của hình chữ nhật O AMN. Vì AB là đường chính giữa, nên AB sẽ cắt MN tại trung điểm C.
Do đó, ta có MN = 2 X MC
Ta cần tính độ dài MC. Vì M là trung điểm của OA, nên MC = 1/2 OA
Từ đây, ta có:
MC = 1/2 OA = 1/2 7cm = 3.5cm
Do đó:
MN = 2 x MC = 2 x 3.5 = 7cm
Vậy, độ dài MN là 7cm
#hoctot
Gọi chiều rộng của mảnh đất là x (m) với x>0
Chiều dài của mảnh đất là: \(x+4\) (m)
Diện tích mảnh đất là: \(x\left(x+4\right)\) (m)
Do diện tích mảnh đất là 285 \(m^2\) nên ta có pt:
\(x\left(x+4\right)=285\)
\(\Leftrightarrow x^2+4x-285=0\Rightarrow\left[{}\begin{matrix}x=15\\x=-19< 0\left(loại\right)\end{matrix}\right.\)
Vậy chiều rộng mảnh đất là 15m, chiều dài là \(15+4=19\)m
Chu vi mảnh đất là: \(\left(15+19\right).2=68\left(m\right)\)
a) xét tam giác ABC và tam giác HBA, có
góc B chung
góc BAC = góc AHB (=90o)
=> tg ABC ~ tg HBA (g-g)
=>AB/BC =HB/AB ( tỉ số đồng dạng)
b) xét tg ABC có
BC2 = AB2 +AC2 ( định lí Pythagore)
BC^2 = 9^2 + 12^2
BC^2 = 81 + 144
BC = căn 225
=>BC = 15 cm
diện tích tg ABC là
S = AB.AC = (9.12):2 = 54 cm2
chiều dài AH là
AH = (S : BC).2= 9 cm
c) có: AB/BC =HB/AB(cmt)
=> AB2=HB.BC (đpcm)
cho mình xin ý kiến nhá :333
a: Xét tứ giác AOBM có \(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
nên AOBM là tứ giác nội tiếp
b: Xét ΔAOM vuông tại A có \(sinAMO=\dfrac{AO}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AMO}=30^0\)
Xét (O) có
MA,MB là các tiếp tuyến
DO đó: MA=MB và MO là phân giác của góc AMB
MO là phân giác của góc AMB
=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)
AOBM nội tiếp
=>\(\widehat{AOB}+\widehat{AMB}=180^0\)
=>\(\widehat{AOB}=120^0\)
Độ dài đường tròn (O) là:
\(C=2\cdot5\cdot3,14=31,4\left(cm\right)\)
Diện tích hình quạt tròn ứng với cung nhỏ AB là:
\(S_{q\left(AB\right)}=\Omega\cdot5^2\cdot\dfrac{120}{360}=5^2\cdot\dfrac{3.14}{3}=\dfrac{157}{6}\left(cm^2\right)\)
c: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: OM là phân giác của góc AOB
=>\(\widehat{AOM}=\widehat{BOM}=\dfrac{120^0}{2}=60^0\)
Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)
nên ΔOAC đều
=>AC=OC=OA=R
Xét ΔOCB có OC=OB và \(\widehat{COB}=60^0\)
nên ΔOCB đều
=>OC=CB=OB=R
Xét tứ giác OACB có
OA=AC=CB=OB
nên OACB là hình thoi
Giải:
Câu a tự làm
b; Phương trình hoành độ giao điểm của (p) và (d) là:
\(x^2\) = - 2\(x\) + 3
\(x^2\) + 2\(x\) - 3 = 0
a + b + c = 1 + 2 - 3 = 0
Vậy phương trình có hai nghiệm phân biệt lần lượt là:
\(x_1\) = 1; \(x_2\) = - 3
\(x_1\) = 1 ⇒ y1 = 12 = 1; \(x_2\) = - 3 ⇒ y2 = (\(x_2\))2 = (- 3)2 = 9
Vậy (p) cắt (d) tại hai điểm A; B lần lượt có tọa độ là:
A(1; 1); B(-3; 9)
a.
Do MA, MB là các tiếp tuyến \(\Rightarrow\widehat{MAO}=\widehat{MBO}=90^0\)
\(\Rightarrow A,B\) cùng nhìn OM dưới 1 góc vuông nên AOBM nội tiếp
b.
\(C_{\left(O\right)}=2\pi R=10\pi=31,42\left(cm\right)\)
Trong tam giác vuông OAM:
\(cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AOM}=60^0\)
\(\Rightarrow\widehat{AOB}=2\widehat{AOM}=120^0\)
\(\Rightarrow S_{OAB}=S_{\left(O\right)}.\dfrac{120}{360}=\dfrac{\pi.R^2}{3}=\dfrac{5^2.\pi}{3}\approx26,18\)
c.
Ta có \(CM=OM-OC=2R-R=R\)
\(\Rightarrow CM=OC\Rightarrow C\) là trung điểm OM
\(\Rightarrow AC\) là trung tuyến ứng với cạnh huyền trong tam giác vuông OAM
\(\Rightarrow AC=\dfrac{1}{2}OM=R=OA\)
Tương tự có BC là trung tuyến ứng với cạnh huyền trong tam giác vuông OBM
\(\Rightarrow BC=OC=R\)
\(\Rightarrow OA=AC=BC=OB\Rightarrow AOBC\) là hình thoi
Gọi D là giao điểm AB và OC \(\Rightarrow AD\perp OC\) (hai đường chéo hình thoi)
Trong tam giác vuông AOD:
\(sin\widehat{AOD}=\dfrac{AD}{OA}\Rightarrow AD=OA.sin\widehat{AOD}=5.sin60^0=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
\(\Rightarrow AB=2AD=5\sqrt{3}\) (cm)
\(\Rightarrow S_{AOBC}=\dfrac{1}{2}AD.OC=\dfrac{25\sqrt{3}}{2}\approx21,65\left(cm^2\right)\)
Gọi \(d=ƯC\left(2n+1;4n-2\right)\)
Do \(2n+1\) lẻ \(\Rightarrow d\) lẻ
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\4n-2⋮d\end{matrix}\right.\)
\(\Rightarrow2\left(2n+1\right)-\left(4n-2\right)⋮d\)
\(\Rightarrow4⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\\d=4\end{matrix}\right.\)
Mà d lẻ \(\Rightarrow d=1\)
\(\Rightarrow\dfrac{2n+1}{4n-2}\) tối giản