K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Thể tích của hình lập phương cạnh a bằng a mũ 3 lần.

V = a x a x a = a3

~~ Học tốt ~~

17 tháng 3 2020

\(\text{V}=\text{a}^3\)

17 tháng 3 2020

Bài hay quá!

Đặt \(a=\frac{3x}{x+y+z};b=\frac{3y}{x+y+z};c=\frac{3z}{x+y+z}\left(x;y;z>0\right)\)

Sau khi quy đồng cần chứng minh:

\(2\, \left( x+y+z \right) \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)(gõ Latex, không biết ad đã fix lỗi chưa, nếu nó không hiện thì hỏi ad, đừng hỏi em!)

Hay là: \( \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)

Or:

\(9\, \left( 1/4\, \left( x-2\,z+y \right) ^{2}+3/4\, \left( -y+x \right) ^{2} \right) {z}^{3}+3\, \left( x-2\,z+y \right) ^{3}{z}^{2}+ \left( \left( 3/4\, \left( x-2\,z+y \right) ^{2}+1/4\, \left( -y+x \right) ^{2} \right) \left( -y+x \right) ^{2}+ \left( x-z \right) ^{ 4}+ \left( y-z \right) ^{4} \right) z+ \left( x-z \right) \left( y-z \right) \left( \left( x-z \right) ^{3}+3\, \left( x-z \right) ^{2} \left( y-z \right) +3\, \left( x-z \right) \left( y-z \right) ^{2}+ 21\, \left( x-z \right) \left( y-z \right) z+ \left( y-z \right) ^{3} \right) \geq 0 \)

Cách xử trí: Nếu nó không hiện: Sau khi quy đồng, ta biến đối nó về như trong link sau: https://imgur.com/D8ScX4k

18 tháng 3 2020

Cách khác:

\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a^2+b^2+c^2+3\)

Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+3\)

Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(ab+bc+ca\right)\ge12\)

Or: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\ge6\)

Giả sử \(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1\)(*)

Do đó: \(VT=\frac{ab+bc+ca}{abc}+ab+bc+ca\)

\(\ge\frac{a+b+c\left(a+b\right)-1}{\frac{c\left(a+b\right)^2}{4}}+a+b+c\left(a+b\right)-1\)

\(=\frac{4\left(c+1\right)\left(a+b\right)-4}{c\left(a+b\right)^2}+\left(c+1\right)\left(a+b\right)-1\)

\(=\frac{4\left(c+1\right)\left(3-c\right)-4}{c\left(3-c\right)^2}+\left(c+1\right)\left(3-c\right)-1\ge6\)

Last inequality\(\Leftrightarrow\frac{\left(2-c\right)^3\left(c-1\right)^2}{c\left(c-3\right)^2}\ge0\). Nếu c < 2 thì ta có đpcm.

Nếu \(c\ge2\)

\(VT=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\)

\(>\frac{4}{a+b}+ab+c\left(a+b\right)\ge\frac{4}{a+b}+2\left(a+b\right)\ge2\sqrt{8}>3\)

17 tháng 3 2020

Viết lại như sai: 1 2 3 4 5 ...10 11 12 13.... 998 999 1000

Chữ số thứ 2020 là 1 thành phần của số có 3 chữ số. 

Số chữ số là thành phần của số có 2 chữ số và 1 chữ số tính từ 1 đến 99 là:

9 + 90 x 2 = 189  chữ số

Số chữ số là thành phần của số có 3 chữ số là:

2020 - 189 = 1831 chữ số 

1831 chia 3 = 610 dư 1

Gọi x là số cuối cùng có đủ thành phần 

ta có: ( x - 100) : 1 + 1 = 610 <=> x = 709 

Như vậy  ta có dãy: 1 2 3 4 5 ...10 11 12 13.... 707 708 709 7...

Vậy số thứ 2020 là số 7

( Có vẻ khó hiểu nhỉ)

17 tháng 3 2020

Nguyễn Linh Chi

đoạn cuối con không hiểu lắm cô ơi

17 tháng 3 2020

\(\text{Ta có:}A+2=x^2+3x+\frac{1}{4}+2=x^2+3x+\frac{9}{4}=x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2=\left(x+\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow A+2\ge0\Rightarrow A\ge-2\)

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)