K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) - Xét tam giác MHC và tam giác MKB có :
    BM=AC ( Do M là trung điểm BC )
  Góc BMK= Góc HMC ( đối đỉnh )
    MK=MC( theo giả thiết )
=) Tam giác MHC = tam giác MKB (c.g.c)
=) Góc HKB = góc MHC=90 độ ( 2 góc tương ứng )
b) - Có KH vuông góc AC
AB vuông góc AC 
=) AB//KH ( đpcm )
=) góc MAH=góc BMA và góc BMA=góc MBK ( So le trong )
=) Góc MAH=góc MBK
- Xét tam giác MKB và tam giác MHA có
Góc MBK=góc MAH(chứng minh trên)
Góc BKM= góc MHA = 90 độ
MH=MK( theo giả thiết )
=) tam giác MKB=tam giác MHA ( cạnh góc vuông-góc nhọn) 
=)BK=AH ( 2 cạnh tương ứng )
* Có thể chứng minh theo cách đoạn chắn nữa(Nhiều cách lắm)
c) - Vì tam giác MHC= tam giác MKB ( chứng minh a )
=) BK=HC( 2 cạnh tương ứng)
Mà BK=AN ( chứng minh b0
=) HC=AN =) H là trung điểm AC 
=) MH là đường trung tuyến của tam giác MAC mà MH đồng thời là đường cao của tam giác MAC
=) Tam giác MAC cân tại M.
d) - Có M là trung điểm BC =) AM là đường trung tuyến BC mà BH cũng là đường trung tuyến AC(chứng minh trên)
và BH cắt AM ở G =) G là trọng tâm của tam giác ABC( giao 3 đường trung tuyến )
=) AG = 1/3 AM (1)
Lại xét tam giác BGC có : GB+GC > BC ( theo bất đẳng thức tam giác ) (2)
Lại có tam giác ABC vuông tại A mà AM là đường trung tuyến BC 
=) AM = 1/2 BC (theo tính chất) 
Từ (1) =) 3AG=3.1/3AM=AM = 1/2 BC
=) 3AG<BC
Mà theo (2) thì GB+GC>BC =) GB+GC>3GA =) Đpcm .
 

GT | ΔABC, ˆA<90oA^<90o

Ax ⊥ AB, AD = AB

Ay ⊥ AC, AE = AC

KL | a, BE=CD

b, BE ⊥ CD

Toán lớp 7

Giải:

a, Vì Ay ⊥ AB

⇒ A1 = 90<1>

Ax ⊥ AC

⇒ A2 = 90<2>

Từ <1>,<2> ⇒ A1=A2

Mà ˆDACDAC^ = ˆA1+ˆA3A1^+A3^;

ˆEAC=ˆA2+ˆA3EAC^=A2^+A3^.

⇒ ​ˆDACDAC^​ = ˆEACEAC^

Xét ΔDAC và ΔEAB có:

AD = AB (gt)

A1= A290o90o

AE =AC (gt)

⇒ ΔDAC = ΔEAB(c.g.c)

b, Vì ΔDAC = ΔEAB(CMT)

⇒ BE⊥ CD( 2 cạnh tương ứng)

14 tháng 3 2021

\(\Rightarrow\orbr{\begin{cases}2x-7=5x+2\\2x-7=-\left(5x+2\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x-7=5x+2\\2x-7=-5x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x-5x=2+7\\2x+5x=-2+7\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}-3x=9\\7x=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{5}{7}\end{cases}}\) 

vậy x=-3 hoặc x=\(\frac{5}{7}\) 

14 tháng 3 2021

a) xét tam giác ABH và tam giác AHC có
AB=AC( tam giác ABC cân tại A)
BHA=CHA=\(90^0\)\(AH\perp BC\))
AH là cạnh chung
Do đó tam giác ABH = tam giác AHC( cạnh huyền- cạnh góc vuông)
A B C M N H 1 2

14 tháng 3 2021

b) có Tam giác ABH = tam giác AHC (cmt)

\(\Rightarrow\)A1=A2( 2 góc tương ứng)

xét tam giác AMH và tam giác ANH có

A!=A2( cmt)

AH là cạnh chung

AMH=ANH=\(90^0\) ( HM vuông góc với AB,HN vuông góc với AC)

Do đó  tam giác AMH và tam giác ANH( cạnh huyền góc nhọn)

\(\Rightarrow\)AM=AN( 2 cạnh tương ứng)

\(\Rightarrow\)tam giác AMN cân tại A(ĐN)

14 tháng 3 2021

\(x-y-z=0\Rightarrow\hept{\begin{cases}x-y=z\\y+z=x\\x-z=y\end{cases}}\)

Khi đó B = \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{y+z}{z}=\frac{y.\left(-z\right).x}{x.y.z}=-1\)