Tìm GTLN của \(x-\sqrt{x}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x^2}{\left(x+2\right)^2}+3=3x^2-6x\left(đkxđ:x\ne-2\right)\)
\(< =>\frac{x^2}{\left(x+2\right)^2}=3x^2-6x-3\)
\(< =>x^2=\left(3x^2-6x-3\right)\left(x^2+4x+4\right)\)
\(< =>x^2=3x^4+12x^3+12x^2-6x^3-24x^2-14x-3x^2-12x-12\)
\(< =>3x^4+6x^3-16x^2-26x-12=0\)
Đến đây dễ rồi ha !
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x^2}{\left(x+2\right)^2}+3=3x^2-6xĐK:x\ne-2\)
\(\Leftrightarrow\frac{x^2}{\left(x+2\right)^2}+\frac{3\left(x+2\right)^2}{\left(x+2\right)^2}=\frac{\left(3x^2-6\right)\left(x+2\right)^2}{\left(x+2\right)^2}\)
Khử mẫu và rút gọn ta đc : \(-3x^4-12x^3-2x^2+36x+36=0\)
Mời nhân tài chứ e chịu r
![](https://rs.olm.vn/images/avt/0.png?1311)
B=\(\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)
=\(\frac{10\sqrt{x}-2x+2\sqrt{x}+3\sqrt{x}-3-x-4\sqrt{x}-\sqrt{x}-4}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)
=\(\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)=\(\frac{-3x+3\sqrt{x}+7\sqrt{x}-7}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)
=\(\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)=\(\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)
Vậy...
\(B=\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x-3}}{\sqrt{x}+4}+\frac{\sqrt{x}+1}{1-\sqrt{x}}\)( \(x\ge0;x\ne1\)
=>\(B=\frac{10\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
=> \(B=\frac{10\sqrt{x}-\left(2\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)
=> \(B=\frac{10\sqrt{x}-\left(2x-5\sqrt{x}+3\right)-\left(x+5\sqrt{x}+4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}=\frac{-3x+10\sqrt{x}-7}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)
=> \(B=\frac{\left(\sqrt{x}-1\right)\left(7-3\sqrt{x}\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}=\frac{7-3\sqrt{x}}{\sqrt{x}+4}\)( zì \(x\ge0,x\ne1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tu gia thiet => \(4x+4y+4z+4\sqrt{xyz}=16\)
Xet \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}\)
= \(\sqrt{x\left(4x+4y+4y+4\sqrt{xyx}-4y-4z+yz\right)}\)
=\(\sqrt{x\left(4x+4\sqrt{xyz}+yz\right)}\)
=\(\sqrt{4x^2+4x\sqrt{xyx}+xyz}=\sqrt{\left(2x+\sqrt{xyz}\right)^2}\)
= \(2x+\sqrt{xyz}\)
tuong tu va suy ra \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}\)
= \(2\left(x+y+z\right)+3\sqrt{xyz}\)
hinh nhu de bai bn viet thieu \(-\sqrt{xyz}\)
neu dung de thi goi bieu thuc can tinh la A
ta co \(A=2\left(x+y+z\right)+2\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2.4=8\)
Chuc ban hoc tot
![](https://rs.olm.vn/images/avt/0.png?1311)
mk lp 7: mk nghĩ do tầng ozon và ánh nắng mặt trời( đơán mò)
Ai cũng biết bầu trời có màu xanh nhưng ít ai biết được lý do tại sao. ... Tuy nhiên, màu sắc mà ta thường thấy nhất trên bầu trời là màu xanh vì chỉ có chùm sáng xanh lam có bước sóng dài nhất đi vào khí quyển, bị tán xạ mạnh bởi lớp không khí và chịu phản xạ bởi hơi nước, bụi bặm làm cho bầu trời có màu xanh lam.
học tốt >.<
![](https://rs.olm.vn/images/avt/0.png?1311)
trước tiên ta phải cm: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(#\right)\left(\forall a,b,c\in R;x,y,z>0\right)\)
dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
thật zậy , zới \(a,b\in R;x,y>0\)ta có \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\left(##\right)\left(a,b\in R;x,y>0\right)\)
\(\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\Leftrightarrow\left(bx-ay\right)^2\ge0\)( luôn đúng )
dấu = xảy ra khi zà chỉ khi\(\frac{a}{x}=\frac{b}{y}\)
* áp dụng bất đẳng thức (##) ta được
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
dấu = xảy ra khi zà chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\
* áp dụng bất đẳng thức (#) ta có
vt = \(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)
=\(\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)
\(\ge\frac{\left(x+y+z\right)^3}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}\left(1\right)\)
Lưu ý nhé : \(x\left(x^2-yz+2010\right)=x\left(x^2+xy+zx+1340\right)>0\)
\(y\left(y^2-xz+2010\right)>0\)
\(z\left(z^2-xy+2010\right)>0\)
Ta có \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+xz\right)\right]\)
do dó \(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\) \(\)
=\(\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2010\right]\)
=\(\left(x+y+z\right)^3\left(2\right)\)
Từ (1) zà (2) suy ra
vt \(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)
dấu = xảy ra khi zà chỉ khi \(x=y=z=\frac{\sqrt{2010}}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
=\(4x-4\sqrt{x}+1+\)3
=\(\left(2\sqrt{x}-1\right)^{^2}\)+3\(\ge\)3 với mọi x\(\inℝ\)
Dấu bằng xảy ra<=>\(2\sqrt{x}-1=0\)<=>\(2\sqrt{x}=1\)
<=> \(\sqrt{x}=\frac{1}{2}\)<=>\(x=\frac{1}{4}\)
Vây minA=3 tại \(x=\frac{1}{4}\)
A, thôi chết nhầm đề rồi