K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

Gọi chữ số ban đầu là ab ( a, b là STN. a#0 a=3b )
Nếu đổi chỗ 2 chữ số của số đó thì được số mới là: ba
Theo bài ra ta có:
ba - ab = 54
=> 10b+a-10a-b=54
=> 9b-9a=54
=) 9(b-a)=54
=> b-a=4
Vì a=3b => Số ab là 93

học tốt

29 tháng 3 2020

TÌM MỘT SỐ CÓ BÔN CHỮ SỐ,BIẾT CHỮ SỐ HÀNG TRĂM GẤP ĐÔI CHỮ SỐ HÀNG NGHÌN,CHỮ SỐ HÀNG CHỤC GẤP ĐÔI CHỮ SỐ HÀNG TRĂM, CHỮ SỐ HÀNG ĐƠN VỊ LỚN HƠN CHỮ SỐ HÀNG CHỤC LÀ 3.

27 tháng 4 2020

a

\(3x^2-3y^2-12x+12y\)

\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y-4\right)\)

b

\(x^2-3x-4\)

\(=\left(x^2+x\right)-\left(4x+4\right)\)

\(=x\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x+1\right)\left(x-4\right)\)

30 tháng 3 2020

a) Ta có trong tam giác ABC

\(\frac{AP}{AB}=\frac{11}{16,5}=\frac{2}{3}\)

\(\frac{AQ}{AC}=\frac{14}{21}=\frac{2}{3}\)

=> \(\frac{AP}{AB}=\frac{AQ}{AC}\)

=> PQ//BC ( Định lý Ta Lét đảo ) (đpcm )

b) Gọi N là trung điểm của BC.

Trong tam giác ABC có :

G là trọng tâm của tam giác

=> \(\frac{AG}{AN}=\frac{2}{3}\) ( tính chất trọng tâm trong tam giác )

Ta có trong tam giác ANC : \(\hept{\begin{cases}\frac{AG}{AN}=\frac{2}{3}\\\frac{AQ}{AC}=\frac{2}{3}\end{cases}}\)

=> \(\frac{AG}{AN}=\frac{AQ}{AC}\)=> GQ//NC ( Định lý Ta lét đảo )

Ta có trong tam giác ANB : \(\hept{\begin{cases}\frac{AG}{AN}=\frac{2}{3}\\\frac{AP}{AB}=\frac{2}{3}\end{cases}}\) => \(\frac{AG}{AN}=\frac{AP}{AB}\)=> PG//BN ( Định lý Ta lét đảo )

Ta lại có: GQ//NC (cmt) và PG//BN (cmt)

mà N là trung điểm của BC => GQ//BC//PG => Q,G,P thẳng hàng ( Tiên đề ơ- clit )

Nguồn: hienpham7 (hoidap247)

29 tháng 3 2020

Đáp án:

Giải thích các bước giải:

a) Ta có trong tam giác abc: 

  AP/AB=11/16,5=2/3

AQ/AC=14/21=2/3

=> AP/AB=AQ/AC

=> PQ//BC ( Định lý Ta Lét đảo ) (đpcm )

b) Đang suy nghĩ, khi nào nghĩ ra mik sẽ giải tiếp

29 tháng 3 2020

b Gọi G là trọng tâm của ABC Chứng minh  P Q G thẳng hàng

Mik chép sai nha

29 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

\(A=\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x}{x-1}+\frac{4}{\left(x-1\right)\left(x+3\right)}-\frac{2x-5}{x+3}=0\)

\(\Leftrightarrow\frac{2x\left(x+3\right)+4-\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow2x^2+6x+4-2x^2+7x-5=0\)

\(\Leftrightarrow13x-1=0\)

\(\Leftrightarrow x=\frac{1}{13}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{13}\right\}\)

29 tháng 3 2020

S=1/3 nha!