Cho tam giác ABC. M là trung điểm của BC, lấy điểm E thuộc MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC tại F. Chứng minh CF= DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nào cần thì xem nè ( đợi lâu quá trời luôn mà không có ai trả lời mình hết )
Gọi I,J lần lượt là trung điểm của EC và ED.
Ta có tứ giác EINJ là hình bình hành ⇒EJ=NI,EI=NJ và ∠EIN=∠EJN.
Chú ý các tam giác CKE,DHE vuông tại K,H, theo tính chất đường trung tuyến
⇒JH=JE=IN,IK=IE=JN
Ta có KIC,HJD là các tam giác cân tại I và J, từ đó
∠KIE=2∠ACB=2∠ADB=∠HJE⇒∠KIN=∠HJN.
Do đó △KIN=△NJH (c.g.c)⇒NK=NH.
Chứng minh tương tự MH=MK⇒MN là đường trung trực của HK.
Bởi vậy HK⊥MN
a) (6x+1)2 + (6x-1)2 - 2(1+6x)(6x-1)
= (6x+1+6x-1)2
=144x2
b) x(2x2 -3) - x2(5x+1) +x2
=2x3 - 3x - 5x3 -x2+x2
=-3x3-3x
=-3x(x2+1)
c) 3(22+1)(24+1)(28+1)(216+1)
= (22-1)(22+1)(24+1)(28+1)(216+1)
= (24-1)(24+1)(28+1)(216+1)
= (28-1)(28+1)(216+1)
= (216-1)(216+1)
= 232 -1
d) 3x(x-2) - 5x(1-x) - 8(x2 -3)
= 3x2-6x - 5x + 5x2 - 8x2 +24
= -11x +24
\(\frac{5-x}{3}+\frac{3x-2}{5}=\frac{4x+3}{6-2x}\)
\(\frac{5\left(5-x\right)}{15}+\frac{3\left(3x-2\right)}{15}=\frac{2\left(2x+2\right)-1}{2\left(3-x\right)}\)
\(25-x+9x-6=\frac{2x+1}{3-x}\)
\(19+8x=\frac{2x+1}{3-x}\)
\(19+8x=\left(2x+1\right).\frac{1}{3-x}\)
\(19+8x=\frac{2x}{3-x}+\frac{1}{3-x}\)
\(19+8x=2x+1\)
\(19+8x-2x-1=0\)
\(18+6x=0\Leftrightarrow6x=-18\Leftrightarrow x=-3\)
\(ĐKXĐ:x\ne-1\)
\(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)\(\Leftrightarrow\frac{2x+3}{x+1}-\frac{1-x}{x+1}=3\)
\(\Leftrightarrow\frac{2x+3}{x+1}+\frac{x-1}{x+1}=3\)\(\Leftrightarrow\frac{2x+3+x-1}{x+1}=3\)
\(\Leftrightarrow\frac{3x+2}{x+1}=3\)\(\Leftrightarrow3x+2=3\left(x+1\right)\)\(\Leftrightarrow3x+2=3x+3\)
\(\Leftrightarrow3x-3x=3-2\)\(\Leftrightarrow0x=1\)( vô lý )
Vậy tập nghiệm của phương trình là \(S=\varnothing\)
Tham khảo nhé bạn !
Đề bài : ( 2.x - 2 )2 = ( x+ 1 ) 2 + 3. ( x - 2 ) . ( x + 5 )
Giải
Ta có : ( 2.x - 2 )2 = ( x+ 1 ) 2 + 3. ( x - 2 ) . ( x + 5 )
<=> 4.x2 - 8.x + 4 = x2 + 2.x+ 1 + 3. ( x2 + 3.x - 10 )
<=> 4.x2 -8.x + 4 = 4.x 2 + 11.x -29
<=> 19.x = 33
<=> x = 33/19
Vậy x = 33/19
Tham khảo nhé bạn !
Đề bài : 2.x2 - 5.x + 2 = 0
Giải
Ta có : 2.x2 - 5.x + 2 = 0
<=> 2.x2 -4.x - x + 2 = 0
<=> ( 2.x 2 -4.x ) - ( x - 2 ) = 0
<=> ( 2.x - 1 ) . ( x - 2 ) = 0
<=> \(\orbr{\begin{cases}2.x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}}\)
Vậy x = { 1/2 ; 2 }
(4x+2)(x2+10)=0
\(\Rightarrow\orbr{\begin{cases}4x+2=0\\x^2+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=-2\\x^2=-10\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-1}{2}\\x\in\varnothing\end{cases}}}\)\
\(\Rightarrow x=\frac{1}{2}\)
học tốt
Qua K vẽ đường thẳng // với AB cắt AC tại H.
=> AHKD là hình bình hành => DK = AH (1)
Gọi giao điểm của AK và DH là O. Vì AHKD là HBH => DO = OH
Xét 3 đường thẳng MA, CA, BA đồng quy tại A cắt 2 đường thẳng DH và BC ta được: DO/OH = BM/MC = 1
=> DH // BC (định lí chùm đường thẳng đồng quy đảo)
Xét ∆ ADH và ∆ FEC có:
AD = EF ( t/c đoạn chắn) ; DH = EC (t/c đoạn chắn) ; ^ADH = ^FEC => ∆ ADH = ∆ FEC (c-g-c)
=> AH = CF (2)
Từ (1) và (2) => CF = DK (đpcm)
GL
Do EF//AB⇒\(\frac{CF}{CA}=\frac{EF}{AB}\)⇒\(\frac{CF}{EF}=\frac{AC}{AB}\)(1)
Dựng MG//AC và MM là trung điểm cạnh BC
⇒GM là đường trung bình ΔABC
=⇒G là trung điểm cạnh AB ⇒AG=BG
Do DK//GM⇒\(\frac{AD}{AG}=\frac{DK}{GM}\)⇒\(\frac{AD}{BG}=\frac{DK}{GM}\)
=> \(\frac{DK}{AD}=\frac{GM}{BG}=\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\frac{CF}{EF}=\frac{DK}{AD}\)
Mà tứ giác ADEF là hình bình hành (vì EF//AD và DE//AF) nên AD=EF
=> CF=DK (đpcm)
Nguồn: thuynga