Mạch điện nối tiếp là khi các thiết bị được nối chung với nhau theo kiểu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(4x^2-9\right)\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}4x^2-9=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=\frac{9}{4}\\x=-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm\frac{3}{2}\\x=-2\end{cases}}}\)
Vậy : \(x\in\left\{\frac{9}{4};-2\right\}\)
#Hoctot
\(\left(4x^2-9\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)\left(x+2\right)=0\Leftrightarrow x=\frac{3}{2};-\frac{3}{2};-2\)
Vậy tập nghiệm của phương trình là { \(\pm\frac{3}{2}\);-2 }
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x+6\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(2x+6\right)\left(x-4\right)\left(x+4\right)=0\)
TH1 : \(2x+6=0\Leftrightarrow x=-2\)
TH2 : \(x-4=0\Leftrightarrow x=4\)
TH3 : \(x+4=0\Leftrightarrow x=-4\)
Vậy tập nghiệm của phương trình là S = { \(-2;\pm4\)}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
\(\Leftrightarrow\frac{9\left(3-x\right)}{24}+\frac{16\left(5-x\right)}{24}=\frac{12-12x}{24}-\frac{48}{24}\)
Khử mẫu : \(27-9x+80-16x=12-12x-48\)
\(\Leftrightarrow107-9x=-36-12x\Leftrightarrow143=-3x\Leftrightarrow x=-\frac{143}{3}\)
Vậy tập nghiệm của phương trình là S = { -143/3 }
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{x}{3}-\frac{5x}{6}=\frac{x}{4-5}\)
\(\Leftrightarrow\frac{2x}{6}-\frac{5x}{6}=\frac{x}{-1}\Leftrightarrow\frac{-x}{2}=\frac{x}{-1}\)
\(\Leftrightarrow x=2x\Leftrightarrow x-2x=0\Leftrightarrow x\left(1-2\right)=0\Leftrightarrow x=0\)
b, \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{1}+\frac{x+3}{4}\)
\(\Leftrightarrow\frac{8x-3-6x+4}{4}=\frac{8x-4+x+3}{4}\)
Khử mẫu : \(2x+1=9x-1\Leftrightarrow-7x=-2\Leftrightarrow x=\frac{2}{7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Leftrightarrow\frac{bc+ac-ab}{abc}=\frac{1}{a+b-c}\)\(\Leftrightarrow\left(bc+ca-ab\right)\left(a+b-c\right)=abc\)\(\Leftrightarrow\left(abc+b^2c-bc^2\right)-\left(a^2b+ab^2-abc\right)-ca\left(c-a\right)=0\)\(\Leftrightarrow b\left(c-a\right)\left(a+b-c\right)-ca\left(c-a\right)=0\)\(\Leftrightarrow\left(c-a\right)\left(ab+b^2-bc-ca\right)=0\Leftrightarrow\left(c-a\right)\left(b-c\right)\left(a+b\right)=0\)
Vì a, b, c đôi một khác nhau nên a + b = 0 hay b = - a < 0 (Do a > 0)
Vậy b < 0 (đpcm)