Các đường phân giác của các góc ngoài tại B và C của tam giác ABC cắt nhau tại K. Đường thẳng vuông góc với AK tại K cắt các đường thẳng AB, AC theo thứ tự tại D và E. CMR: hai tam giác DBK và EKC đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}2x+\frac{1}{y}=\frac{3}{x}\\2y+\frac{1}{x}=\frac{3}{y}\end{cases}\Rightarrow\hept{\begin{cases}2x+\frac{1}{y}=\frac{3}{x}\\2x+\frac{1}{y}=\frac{3x}{y^2}\end{cases}}}\)(nhân 2 vế của pt 2 với x/y)
\(\Rightarrow\frac{3}{x}=\frac{3x}{y^2}\Rightarrow3x^2=3y^2\Rightarrow x^2=y^2\)
\(\Rightarrow\orbr{\begin{cases}x=y\\x=-y\end{cases}}\)
Thay vào rồi giải nha bạn
ĐKXĐ: \(x\ge0\)
\(-2x-3\sqrt{x}+2\)
\(=-2\left(x+\frac{3}{2}\sqrt{x}-1\right)\)
\(=-2\left(\sqrt{x}+\frac{3}{4}\right)^2+\frac{25}{8}\le\frac{25}{8}\forall x\ge0\)
Để bt đạt GTLN => \(-2\left(\sqrt{x}+\frac{3}{4}\right)^2\) lớn nhất
\(\Rightarrow\sqrt{x}+\frac{3}{4}\) nhỏ nhất
\(\Rightarrow x=0\) \(\Rightarrow\) GTLN của bt = \(2\)
A B C I K P
Do tam giác ABC đều nên \(AB=BC=CA=x\)
Kết hợp I, K, P là trung điểm AB, AC, BC suy ra:
IB = BP = \(\frac{x}{2}\). Do đó \(\Delta\)IBP cân tại B có một góc là 60o (^B) nên nó là tam giác đều:
Do đó: \(\left(IB=\right)BP=IP=\frac{a}{2}\) . Suy ra B và I cùng cách P một khoảng \(\frac{a}{2}\) nên B và I cùng thuộc đường trong tâm P, bán kính \(\frac{a}{2}\)(1). Tương tự:
K và C cùng cách P một khoảng \(\frac{a}{2}\) nên K và C cùng thuôc đường trong tâm P bán kính \(\frac{a}{2}\) (2)
Từ (1) và (2) suy ra B, I, K, C cùng thuộc đường tròn tâm P bán kính \(\frac{a}{2}\) nên ta có đpcm.
P/s: em mới học nên ko chắc đâu ạ!
Ta có \(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
TT
=> \(VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+a\right)\left(c+b\right)}\)
Áp dụng cosi \(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)
Tương tự với các phân thức còn lại
=> \(VT+\frac{1}{2}\left(a+b+c\right)\ge\frac{3}{4}\left(a+b+c\right)\)
=> \(VT\ge\frac{a+b+c}{4}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=3
a.\(DK:\frac{2}{3}\le x< 4\)
b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\)
c.\(DK:x\le-3\)
Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn
Có xy + yz + zx = 1
=> 1 + x2 = x2 + xy + yz + zx
1 + x2 = (x + y)(y + z)
Tương tự ta có:
1 + y2 = (y + x)(y + z)
1 + z2 = (z + x)(z + y)
Thay vào P, ta được:
\(P=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(P=xy+yz+zx+xy+yz+zx\)
\(P=2\left(xy+yz+zx\right)=2\)
Vậy P = 2