Giải phương trình: (x2 - 5x)2 + 10(x2 - 5x) + 24 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Đặt n3 - n + 2 = k2
<=> n(n2 -1) +2 = k2
<=> (n-1)n(n+1) +2 = k2
Mà (n-1)n(n+1) là 3 STN liên tiếp => (n-1)n(n+1) chia hết cho 3
Mà không có số chính phương nào chia 3 dư 2
=> (n-1)n(n+1) +2 = k2 (vô lý)
Vậy n= {O}

1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4

\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)- \left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy : Tập nghiệm của PT là S={-1;-4}
#H
\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)-\left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left[\left(x+7\right)-\left(-2x-5\right)\right]=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy tập nghiệm của pt \(S=\left\{-1;-4\right\}\)

\(n_{O_2}=\frac{6,72}{22,4}=0,3\left(mol\right)\)
PTHH : \(2KMnO_4-t^o->K_2MnO_4+MnO_4+O_2\) (1)
\(2KClO_3-t^o->2KCl+3O_2\) (2)
Theo pthh (1) : \(n_{KMnO_4}=2n_{O_2}=0,6\left(mol\right)\)
Theo pthh (2) : \(n_{KCl}=\frac{2}{3}n_{O_2}=0,2\left(mol\right)\)
=> \(\hept{\begin{cases}m_{KMnO_4\left(can.dung\right)}=158\cdot0,6=94,8\left(g\right)\\m_{KClO_3\left(can.dung\right)}=122,5\cdot0,2=24,5\left(g\right)\end{cases}}\)
(x2 - 5x)2 + 10(x2 - 5x) + 24 = 0
<=> (x2 - 5x)2 + 10(x2 - 5x) + 25 - 1 = 0
<=> (x2 - 5x + 5)2 - 1 = 0
<=> (x2 - 5x + 4)(x2 - 5x + 6) = 0
<=> (x - 1)(x - 4)(x - 2)(x - 3) = 0
<=> x - 1 = 0 hoặc x - 4 = 0 hoặc x - 2 = 0 hoặc x - 3 = 0
<=> x = 1 hoặc x = 4 hoặc x = 2 hoặc x = 3
Vậy \(x\in\left\{1;2;3;4\right\}\)là nghiệm phương trình
Đặt x2 - 5x = t
pt <=> t2 + 10t + 24 = 0
<=> t2 + 4t + 6t + 24 = 0
<=> t( t + 4 ) + 6( t + 4 ) = 0
<=> ( t + 4 )( t + 6 ) = 0
<=> ( x2 - 5x + 4 )( x2 - 5x + 6 ) = 0
<=> ( x2 - x - 4x + 4 )( x2 - 2x - 3x + 6 ) = 0
<=> [ x( x - 1 ) - 4( x - 1 ) ][ x( x - 2 ) - 3( x - 2 ) ] = 0
<=> ( x - 1 )( x - 2 )( x - 3 )( x - 4 ) = 0
<=> x = 1 hoặc x = 2 hoặc x = 3 hoặc x = 4
Vậy phương trình có tập nghiệm S = { 1 ; 2 ; 3 ; 4 }