1) Lập CTHH nhanh (bằng quy tắc chéo) của các hợp chất tạo bởi:
a) Al và nhóm ()
b) Na và nhóm ()
c) Mg và nhóm ()
d) Sắt (III) và nhóm ()
e) Nhôm và nhóm phốt phát
2) Lập PTHH và cho biết phản ứng nào là phản ứng phân hủy? Phản ứng nào là phản ứng hóa hợp?
a)
b)
c)
d)
e)
3) Các oxit sau đây thuộc loại oxit axit hay oxit bazơ? Gọi tên các oxit đó.
4) Bà toán: Đốt cháy 6,2g phot pho trong bình chứa 8,5g khí oxi tạo thành điphotpho pentaoxit ()
a) Tính khối lượng chất tạo thành?
b) Tính khối lượng chất dư?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)
<=> \(3x-7=x\left(3x-7\right)\)
<=> \(\left(3x-7\right)-x\left(3x-7\right)=0\)
<=> \(\left(3x-7\right)\left(1-x\right)=0\)
<=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)
Vậy S = { 7/3; 1}
b) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
<=> \(\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
<=> \(\left(3x-1\right)\left(x^2-7x+12\right)=0\)
<=> \(\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)
<=> \(\left(3x-1\right)\left(x\left(x-3\right)-4\left(x-3\right)\right)=0\)
<=> \(\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
<=> x = 1/3 hoặc x = 3 hoặc x = 4.
Vậy S = { 1/3; 3; 4}
\(a,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+1\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(7-5x\right)=0\)
\(\Leftrightarrow x-1=0;x+2=0\)hoặc \(7-5x=0\)
\(\Leftrightarrow x=1;x=-2\)hoặc \(x=\frac{7}{5}\)
KL....
\(b,\left(5x^2-2x+10\right)^2=\left(x^2+10x-8\right)^2\)
\(\Leftrightarrow\left(5x^2-2x+10\right)^2-\left(x^2+10x-8\right)^2=0\)
\(\Leftrightarrow\left(5x^2-2x+10-x^2-10x+8\right)\left(5x^2-2x+10+x^2+10x-8\right)=0\)
\(\Leftrightarrow\left(4x^2-12x+18\right)\left(6x^2+8x+2\right)=0\)
\(\Leftrightarrow\left(x^2-3x+\frac{9}{2}\right)\left(6x^2+6x+2x+2\right)=0\)
\(\Leftrightarrow\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{9}{4}\right)\left(6x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\right]\left(3x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-1\end{cases}}\)Vì \(\left(x-\frac{3}{2}\right)^2+\frac{9}{4}>0\forall x\)
Vậy ..
Theo giả thiết \(\frac{1}{x}=\frac{1}{2}-\frac{1}{y}+\frac{1}{2}-\frac{1}{z}=\frac{y-2}{y}+\frac{z-2}{z}\)
Áp dụng BĐT Cosi
\(\frac{1}{x}=\frac{y-2}{y}+\frac{z-2}{z}\ge2\sqrt{\frac{\left(y-2\right)\left(z-2\right)}{yz}}\left(1\right)\)
Cmtt ta được \(\frac{1}{y}=\frac{x-2}{x}+\frac{z-2}{z}\ge2\sqrt{\frac{\left(x-2\right)\left(z-2\right)}{yz}}\left(2\right)\)
\(\frac{1}{z}=\frac{x-2}{x}+\frac{y-2}{y}\ge2\sqrt{\frac{\left(x-2\right)\left(y-2\right)}{xy}}\left(3\right)\)
Nhân từng vế của (1)(2)(3) ta được đpcm