Rút gọn \(\left(x-4\right)\sqrt{6-8x+x^2}\) với x>=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko biết đề sai hay mk sai !^_^
Ta có:
\(D=\left(\frac{1}{1-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{a-2\sqrt{a}+1}\)
\(=\left(\frac{-1}{\sqrt{a}-1}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{\left(\sqrt{a}-1\right)^2}\)
\(=0:\frac{\sqrt{a+1}}{\left(\sqrt{a}-1\right)^2}\)
\(=0\)
Bạn Tuấn Anh chép sai đề nhé
Với a>0 và a khác 1
\(D=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(D=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(D=\left(\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(D=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
ĐKXĐ : \(x\ge2;y\ge3\)
\(\Rightarrow S=\sqrt{x-2}+\sqrt{y-3}\ge1\)
Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x=2;y=4\\y=3;x=3\end{cases}}\)
\(a,\sqrt{3-x}+\sqrt{2-x}=1\)
\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)
\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)
\(\Rightarrow2x+2\sqrt{2-x}=0\)
\(\Rightarrow x+\sqrt{2-x}=0\)
\(\Rightarrow2-x=\left(-x\right)^2\)
\(\Rightarrow2-x=x^2\)
\(\Rightarrow2-x^2-x=0\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
Vậy....
Đặt \(a-b=x;b-c=y;c-a=z\) thì ta có:
\(\hept{\begin{cases}xyz=-2015\\x+y+z=0\end{cases}}\)
Ta có:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=x^3+y^3+z^3\)
\(=x^3+y^3+z^3-3xyz+3xyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)
\(=0-3.2015=-6045\)
Áp dụng t/c dãy tỉ số bằng nhau, ta được:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
\(\Rightarrow P=2.2.2=8\)
Xét \(a+b+c=0\)
\(\Rightarrow P=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
Xét \(a+b+c\ne0\)thì ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)
\(\Rightarrow P=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=\frac{\left(2a\right)\left(2b\right)\left(2c\right)}{abc}=8\)
Cảm ơn OLM đã trừ điểm https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html
Vô trangh cá nhân của e sẽ thấy đc những câu trả lời "siêu hay" của con chóhttps://olm.vn/thanhvien/kimmai123az
vì vai trò x,y như nhau nên giả sử \(a\ge b\)( a,b \(\ne\)0 )
đặt \(\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}=\frac{a^2+b^2}{a^2b^2}=\frac{1}{n}\)( n là số nguyên tố )
\(\Rightarrow a^2b^2=n\left(a^2+b^2\right)\)\(\Rightarrow a^2b^2-na^2-nb^2=0\)
\(\Rightarrow\left(a^2-n\right)\left(b^2-n\right)=n^2\)
Mà n là nguyên tố nên n2 có ước là 1 ; n ; n2
Xét các TH :
TH1 : \(\hept{\begin{cases}a^2-n=1\\b^2-n=n^2\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=n+1\\b^2=n^2+n=n\left(n+1\right)\end{cases}}}\)( loại vì b2 = n(n+1) ( là tích 2 số nguyên liên tiếp )
TH2 : \(\hept{\begin{cases}a^2-n=n\\b^2-n=n\end{cases}\Leftrightarrow a^2=b^2=2n}\)
Mà n là số nguyên tố nên đặt n = 2k2 \(\Rightarrow\)k = 1 ( vì n là số nguyên tố )
\(\Rightarrow\)a = b = \(2\)