Tính
A= -1^2 + 2^2 - 3^2 + 4^2 - ..... (-1)^n * n^2
Cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
DB chung
góc PBD=góc MDB
=>ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
=>H nằm trên trung trực của BD(1)
Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có
BD chung
góc QBD=góc NDB
=>ΔQBD=ΔNDB
=>góc KBD=góc KDB
=>K nằm trên trung trực của BD(2)
Vì ABCD là hình thoi
nên AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng
b: Xét tứ giác BHDK có
BH//DK
BK//DH
BH=HD
=>BHDK là hình thoi
Bài làm
A B C D E F 60 o
Xét tam giác AEB và tam giác DFB có:
\(\widehat{BEA}=\widehat{BFD}=90^0\)
Cạnh huyền AB = BD ( Do ABCD là hình thoi nên AB = AC = CD = BD )
Góc nhọn: \(\widehat{A}=\widehat{D}\)( hai góc đối của hình thoi )
=> Tam giác AEB = tam giác DFB ( cạnh huyền - góc nhọn )
=> BE = BF ( hai cạnh tương ứng )
=> Tam giác BEF cân tại B.
Xét tam giác ABE vuông tại E có:
\(\widehat{A}+\widehat{ABE}=90^0\)( hai góc phụ nhau )
hay \(60^0+\widehat{ABE}=90^0\)
=> \(\widehat{ABE}=90^0-60^0=30^0\)
Mà \(\widehat{ABE}=\widehat{DBF}=30^0\)( Vì tam giác AEB = tam giác DFB )
Ta có: \(\widehat{ABD}+\widehat{BDC}=180^0\)( Do BA // DC và hai góc này là hai góc trong cùng phía bù nhau )
=> \(\widehat{ABE}+\widehat{EBF}+\widehat{FBD}+\widehat{BDC}=180^0\)
hay \(30^0+\widehat{EBF}+30^0+60^0=180^0\)
=> \(\widehat{EBF}=180^0-60^0-30^0-30^0\)
=> \(\widehat{EBF}=60^0\)
Mà tam giác EBF cân tại B ( chứng minh trên )
=> Tam giác EBF là tam giác đều.
Ta có:
\(A=-1^2+2^2-3^2+4^2-...-\left(n-1\right)^2+n^2\) (đã sửa đề)
\(A=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left[n^2-\left(n-1\right)^2\right]\)
\(A=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(n-n+1\right)\left(n+n-1\right)\)
\(A=1+2+3+4+...+\left(n-1\right)+n\)
\(A=\frac{\left(n+1\right)\left[\left(n-1\right)\div1+1\right]}{2}=\frac{n\left(n+1\right)}{2}\)
xin lỗi, nhưng bạn có thể giải đề này hộ mình được ko?
sao bạn phải sửa đề vậy?