Chọn 3 chữ số khác nhau từ các số 1,2,4,5,6,7,9 để lập thành số có 3 chữ số chia hết cho 3. Hỏi có thể tạo được bao nhiêu số như vậy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$ax+by=c, bx+cy=a; cx+ay=b$
$\Rightarrow ax+by+bx+cy+cx+ay=a+b+c$
$\Rightarrow (a+b+c)(x+y)=a+b+c$
$\Rightarrow a+b+c=0$ hoặc $x+y=1$
TH1: $a+b+c=0$
$\Rightarrow a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc$ (đpcm)
TH2: $x+y=1$:
$ax+by=c$
$\Rightarrow ax+b(1-x)=c\Rightarrow ax-bx=c-b$
Tương tự: $bx-cx=a-c; cx-ax=b-a$
$\Rightarrow x^3(a-b)(b-c)(c-a)=(c-b)(a-c)(b-a)=-(a-b)(b-c)(c-a)$
$\Rightarrow x^3=-1$ hoặc $(a-b)(b-c)(c-a)=0$
Nếu $(a-b)(b-c)(c-a)=0\Rightarrow a=b$ hoặc $b=c$ hoặc $c=a$
$a=b$ thì $c-b=x(a-b)=0\Rightarrow b=c$
$\Rightarrow a=b=c$. Do đó: $a^3+b^3+c^3=3a^3=3abc$
Tương tự với TH $b=c, c=a$
Nếu $x^3=-1\Rightarrow x=-1$. Khi đó $y=2$
Khi đó:
$2b-a=c; 2c-b=a; 2a-c=b$
$\Rightarrow 2b=a+c, 2c=a+b, 2a=b+c$
$\Rightarrow 2b-2c=c-b\Rightarrow b=c$.
$2c-2a=a-c\Rightarrow a=c$
$\Rightarrow a=b=c$
$\Rightarrow a^3+b^3+c^3=3a^3=3abc$
Vậy ta có đpcm.
A B C D E F
a/
Ta có
AB//CD (cạnh đối hbh) => BE//CD
CE//BD (gt)
=> BECD là hình bh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
b/
Ta có
BE=CD (cạnh đối hbh)
AB=CD (cạnh đối hbh)
=> BE=AB => BF là đường trung tuyến của tg AEF
Ta có
CF//BD (gt)
AD//BC (cạnh đối hbh) => DF//BC
=> BCFD là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có
BC=AD (cạnh đối hbh)
BC=DF (cạnh đối hbh)
=> AD=DF => DE là đường trung tuyến của tg AEF
Ta có
BD=CE (cạnh đối hbh)
BD=CF (cạnh đối hbh)
=> CE=CF => AC là trung tuyến của tg AEF
=> AC; BF; DE đồng quy (trong tg 3 đường trung tuyến đồng quy)
a) x² + 4x + 4 = (x + 2)²
b) 4x² - 4x + 1 = (2x - 1)²
c) 2x - 1 - x²
= -(x² - 2x + 1)
= -(x - 1)²
d) x² + x + 1/4
= x² + 2.x.1/2 + (1/2)²
= (x + 1/2)²
e) 9 - x²
= 3² - x²
= (3 - x)(3 + x)
g) (x + 5)² - 4x²
= (x + 5)² - (2x)²
= (x + 5 - 2x)(x + 5 + 2x)
= (5 - x)(3x + 5)
h) (x + 1)² - (2x - 1)²
= (x + 1 - 2x + 1)(x + 1 + 2x - 1)
= (2 - x).3x
= 3x(2 - x)
i) Sửa đề: x²y² - 4xy + 4
= (xy)² - 2.xy.2 + 2²
= (xy - 2)²
k) y² - (x² - 2x + 1)
= y² - (x - 1)²
= (y - x + 1)(y + x - 1)
l) x³ + 6x² + 12x + 8
= x³ + 3.x².2 + 3.x.2² + 2³
= (x + 2)³
m) 8x³ - 12x²y + 6xy² - y³
= (2x)³ - 3.(2x)².y + 3.2x.y² - y³
= (2x - y)³
a) Xét tứ giác ADHE có:
\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{HDA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)
=> ADHE là h.c.n
b) Ta có:
\(\left\{{}\begin{matrix}\widehat{BID}=2\widehat{IHD}\\\widehat{IKE}=2\widehat{KCE}\end{matrix}\right.\)
mà \(\widehat{IHD}=\widehat{KCE}\)
=> \(\widehat{BID}=\widehat{IKE}\) mà 2 góc có vị trí đồng vị
=> DI//EK
=> DEKI là hình thang
Độ dài chiều cao mặt bên của hình chóp tứ giác đều:
60 : 4 : 6 . 2 = 5 (cm)
\(9\left(x-3y\right)^2-25\left(2x+y\right)^2\)
\(=\left[3\left(x-3y\right)\right]^2-\left[5\left(2x+y\right)\right]^2\)
\(=\left(3x-9y\right)^2-\left(10x+5y\right)^2\)
\(=\left[3x-9y+10x+5y\right]\left[3x-9y-\left(10x+5y\right)\right]\)
\(=\left(13x-4y\right)\left(-7x-14y\right)\)
\(=-7\left(x+2y\right)\left(13x-4y\right)\)
9(x - 3y)² - 25(2x + y)²
= 3².(x - 3y)² - 5².(2x + y)²
= (3x - 9y)² - (10x + 5y)²
= (3x - 9y - 10x - 5y)(3x - 9y + 10x + 5y)
= (-7x - 14y)(13x - 4y)
= -7(x + 2y)(13x - 4y)
vì ở hàng chục nghìn có 0+T = 9 => T chỉ có thể = 9;8
xét H=4:
T=8;9
C=1;0
A=4;9
vì H nhận gt 4 => A=9
*tương tự có T=8,C=1,A=9
=> M+E = 9
mà các giá trị 1;4;8;9 đã được nhận
=> M=3;E=7 và ngược lại; M=2;E=7 và ngược lại
MATH có 4 trường hợp (1)
xét H=9:
T+C chỉ có thể bằng 8 =>
T=8;9
C=1;0
mà H đã nhận gt 9 => T=8;C=1
A=4;9
*tương tự
=>A=4
vì M != E => M+E = 10 và M+E !=0
mà các gt 1;4;8;9 đã được nhận
=>M=3;E=7 và ngược lại
MATH có 2 trường hợp (2)
Từ (1) và (2) ta có:
MATH có 4+2=6 trường hợp
A D B C I
a/
Ta có
DC=AD+BC (gt)
CI=BC (gt)
=> DC=AD+CI
Ta có
DC=DI+CI
=> AD=DI => tg ADI cân tại D \(\Rightarrow\widehat{DAI}=\widehat{DIA}\)
Mà \(\widehat{DAI}=\widehat{BAI}\)
\(\Rightarrow\widehat{DIA}=\widehat{BAI}\) Mà 2 góc này ở vị trí so le trong
=> AB//CD => ABCD là hình thang
b/
Ta có
CI=BC (gt) => tg BCI cân tại C \(\Rightarrow\widehat{CBI}=\widehat{CIB}\)
Ta có
AB//CD \(\Rightarrow\widehat{ABI}=\widehat{CIB}\) (góc so le trong)
\(\Rightarrow\widehat{CBI}=\widehat{ABI}\) => BI là phân giác của góc B