Giải hpt \(\hept{\begin{cases}x^2+xy+x-y-2y^2=0\\x^2-y^2+x+y=6\end{cases}}\)
Help :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 2. ( m- 1 ) .x - 4 = 0
\(\Delta'=\left(m-1\right)^2+4>0\)
=> Với \(\forall\)m thì phương trình đều có 2 nghiệm phân biệt
x1 = - ( m - 1 ) + \(\sqrt{\left(m-1\right)^2+4}\)
\(x_2=-\left(m-1\right)-\sqrt{\left(m-1\right)^2+4}\)
Để x1 và x2 là 1 số nguyên thì m phải là số nguyên và \(\sqrt{\left(m-1\right)^2+4}\)là số nguyên .
Có \(\left(m-1\right)^2\ge0\)
\(\Rightarrow\left(m-1\right)^2+4\ge4\)
\(\Rightarrow\sqrt{\left(m-1\right)^2+4}\ge2\)
\(\Rightarrow\left(m-1\right)^2+4=4\Rightarrow m=1\)
Vậy m = 1
\(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}mx-m^2y=m\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x-my=1\\\left(1+m^2\right)y=1-m\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+my\\y=\frac{1-m}{m^2+1}\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+m.\frac{1-m}{m^2+1}=\frac{1+m}{m^2+1}\\y=\frac{1-m}{m^2+1}\end{cases}}\)
Vậy với mọi m hệ luôn có nghiệm duy nhất.
chử viết hơi xấu bạn phóng to lên mà xeM nhe
CHÚC BẠN HỌC TỐT
ĐƯỜNG TRÒN CHỨ KHÔNG PHẢI LF ĐƯỜNG THÒN NHE BẠN
Gọi số hs lớp 9A là x => số hsg của lớp 9A là \(\frac{x.60}{100}\)
Gọi số hs lớp 9B là y => số hsg của lớp 9b là \(\frac{y.75}{100}\)
=> Ta có pt (1) \(\frac{60x}{100}+\frac{75y}{100}=51\Leftrightarrow12x+15y=1020\)
Ta có hệ PT
\(\hept{\begin{cases}x+y=76\\12x+15y=1020\end{cases}}\)
Giải hệ PT trên
ĐK: \(x\ge0\)
\(M=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)
Để M min \(\Leftrightarrow\frac{3}{\sqrt{x}+2}\)max
\(\Leftrightarrow\sqrt{x}+2\)min
\(\Leftrightarrow\sqrt{x}\)min
\(\Leftrightarrow x\)min
mà \(x\ge0\)
\(\Leftrightarrow x=0\)
Vậy \(Min_M=\frac{-1}{2}\Leftrightarrow x=0\)
Công suất hao phí khi dùng hiệu điện thế 500000 V là: P1==\(\frac{RP^2}{U_12}\)=\(\frac{20.\left(100.10^6\right)^2}{500000^2}\)=800000 W
Công suất hao phí khi dùng hiệu điện thế 400000 V là: P2=\(\frac{RP^2}{U_22}\)=\(\frac{20.\left(100.10^6\right)^2}{400000^2}\)=1250000 W
→ P1−P2=450000 W
→ Lượng điện năng tiết kiệm được trong 1 ngày đêm là: 450000 . 24 . 3600 = 3,888.1010 J = 3,888. 107 kJ
Ta có \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)
Xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)
<=> \(x^3\ge\left(2018^2-2.2018.x+x^2\right)\left(x-\frac{1009}{2}\right)\)
<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2018.2\right)+x\left(2018.1009+2018^2\right)-\frac{2018^2.1009}{2}\)
<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)
<=> \(\frac{9081}{2}\left(x^2-\frac{2.2018}{3}.x+\left(\frac{2018}{3}\right)^2\right)\ge0\)
<=> \(\frac{9081}{2}\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)
=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)
Khi đó \(VT\ge x-\frac{1009}{2}+y-\frac{1009}{2}+z-\frac{1009}{2}=2018-\frac{3}{2}.1009=\frac{1009}{2}\)(ĐPCM)
Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)
Ta có : \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)
xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)
<=> \(x^3\ge\left(x^2-2.2018.x+2018^2\right)\left(x-\frac{1009}{2}\right)\)
<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2.2018\right)+x\left(2018^2+1009.2018\right)-\frac{2018^2.1009}{2}\ge0\)
<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)
<=> \(\frac{9081}{2}.\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)
=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)
Khi đó \(P\ge x+y+z-\frac{3.1009}{2}=\frac{1009}{2}\)(ĐPCM)
Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)
hệ \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y\right)+\left(x-y\right)=0\\x^2-y^2+x+y=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)\left(x+2y+1\right)=0\left(1\right)\\x^2-y^2+x+y=6\left(2\right)\end{cases}}\)
Th1: x=y
pt 2<=> 2x=6
<=> x=y=3
Th2: x+2y+1=0
<=> x=-1-2y
=> pt (2) <=> \(\left(-1-2y\right)^2-y^2-1-2y+y=6\)
\(\Leftrightarrow4y^2+4y+1-y^2-1-2y+y=6\)
\(\Leftrightarrow3y^2+3y-6=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
KL:............................