cho tứ giác ABCD.gọi E,F,G,H lần lượt là trung điểm các cạnh AB,BC,CD,DA.O là giao điểm của EG VÀ FH
a,CMR OE+OF+OG+OH bằng nửa chu vi tứ giác ABCD
b,TỨ GIÁC EFGH LÀ HÌNH CHỮ NHẬT
GIÚP MIK VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi : 30p = 1/2 giờ
Gọi độ dài quãng đường AB là x km (x > 0)
Ta có phương trình :
x/15 - x/18 = 1/2
<=> 6x - 5x/90 = 1/2
<=> x/90 = 1/2
<=> x = 45
<=> x/18 = 2,5
Vậy chiều dài quãng đường AB là 45 km
thời gian đi từ B về A là 2,5 giờ
Giair:
Vận tốc của ô tô trong nữa quãng đường còn lại: 40km/h + 10km/h = 50km/h
Nửa quãng đường đầu ô tô đi mất : 60 : 40 = 1,5 giờ = 1 giờ 30 phút
Nửa quãng đường sau ô tô đi mất : 60 : 50 = 1,2 giờ = 1 giờ 12 phút
Tổng thời gian cả 2 lần đi : 1 giờ 30 phút + 1 giờ 12 phút = 2 giờ 42 phút = 2,7 giờ
Thời gian ô tô dự định đi : 2,7 + 1 = 3,7 (giờ)
Từ đó ta có thể suy ra được quãng đường AB : 40 x 3,7 =148 (km)
Đáp số : 148 km
Gọi x = AB ;C là điểm ô tô tăng tốc
=> Thời gian dự định đi hết AB là \(\frac{x}{40}\)
Quãng đường ô tô đi với vận tốc 40km/h là AC = \(\frac{x}{2}-60\)
=> Thời gian đi là : \(\left(\frac{x}{2}-60\right):40\)
Quãng đường ô tô đi với vận tốc 50km/h là : \(CB=\frac{x}{2}+60\)
=> Thời gian đi là \(\frac{\frac{x}{2}+60}{50}\)
Vì đến sớm hơn 1 giờ nên ta có phương trình :
\(\frac{\frac{x}{2}-60}{40}+\frac{\frac{x}{2}+60}{50}=\frac{x}{40}-1\)
=> x = 2. ( 40 + 50 - 60 + 60 ) = 280 <=> x = 280
Vậy quãng đường AB dài 280 km
BĐT bên trái hiển nhiên là Nesbitt.
BĐT bên phải:
Sau khi quy đồng, phân tích thành nhân tử các kiểu gì đó thì cần chứng minh:
Giả sử . Ta cần chứng minh:
Đặt thì
.
Cần chứng minh:
P/s: Bài này SOS bằng tay đẹp lắm mà thôi tạm thời làm biếng nên không SOS, dùng BW cho nhanh:P
SOS của tth_new ghê vãi,đề nghị tth_new check fb giúp t,nói mãi -_-
KMTTQ giả sử \(a\ge b\ge c\)
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Leftrightarrow\left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)+\left(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}\right)+\left(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)
\(\Leftrightarrow a\left(\frac{a}{b^2+c^2}-\frac{a}{b+c}\right)+b\left(\frac{b}{c^2+a^2}-\frac{b}{c+a}\right)+c\left(\frac{c}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)
\(\Leftrightarrow a\left[\frac{ab+ac-b^2-c^2}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{bc+ba-c^2-a^2}{\left(c+a\right)\left(c^2+a^2\right)}\right]+c\left[\frac{ca+cb-a^2-b^2}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)
\(\Leftrightarrow a\left[\frac{b\left(a-b\right)+c\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{c\left(b-c\right)+a\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]+c\left[\frac{a\left(c-a\right)+b\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma\left[\frac{ab\left(a-b\right)}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{ab\left(a-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\) ( đúng )
Vậy ta có ĐPCM
Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC . có:
A. BD = 20/7 cm; CD = 15/7cm.
B. BD = 15/7 cm; CD = 20/7 cm
C. BD = 1,5 cm; CD = 2,5 cm
D. BD = 2,5 cm; CD = 1,5 cm
Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:
A. DA = 8/3 ; DC = 10/3
B. DA = 10/3; DC = 8/3
C. DA = 4; DC = 2
D. DA = 2,5; DC = 2,5
Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:
A. 1/AB + 1/AC = 2/AD
B. 1/AD + 1/AC = 1/AB
C. 1/ AB + 1/AC = 1/AD
D. 1/AB + 1/AC = 1
Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :
A. x = 14
B. x = 12
C. x = 8
D. Một kết quả khác
Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :
A.10
B.10_5/7
C.14
D.14_2/7
Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:
A. 1/4
B. 1/2
C. 3/4
D.1/3
Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:
A. 3,5
B.5
C. 40/7
D.6
Bài 8:
Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:
A. ME//AC
B. góc AEF = 50°
C. Góc FMC = 50°
D. MB/MA= FA/FC
Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc:
A. DA = 3cm
B. DB = 5cm
C. AC = 6cm
D. Cả 3 đều đúng
|x| + |y| = 6
<=> ( |x| + |y| )2 = 36
<=> |x|2 + 2|x|.|y| + |y|2 = 36
<=> x2 + 2|x|.|y| + y2 = 36
Vì x2 + y2 = 26
<=> 26 + 2|x|.|y| = 36
<=> 2|x|.|y| = 10
<=> |x|.|y| = 5
Ta có : \(\hept{\begin{cases}\left|x\right|\cdot\left|y\right|=5\\\left|x\right|+\left|y\right|=6\end{cases}}\)
<=> (|x|;|y|) ∈ {(5;1);(1;5)}
<=> (x;y) ∈ {(5;1);(-5;-1);(1;5);(-1;-5)}
Vậy ...
vì lxl+lyl=6 và x2 +y2 =26 nên x,y>0,
=> 6= 3+3=2+4=4+2=1+5=5+1
xét trường hợp x + y= 3+3=6 và x2 + y2 =32 + 32 = 9+9= 18 (loại)
xét trường hợp x + y= 2+4=6 và x2 + y2 =22 + 42 = 4+16 = 20 (loại)
xét trường hợp x + y= 4+2=6 và x2 + y2 =42 + 22 = 16+4 = 20 (loại)
xét trường hợp x + y= 1+5=6 và x2 + y2 =12 + 52 = 1+25 = 26 (nhận)
xét trường hợp x + y= 5+1=6 và x2 + y2 =52 + 12 = 25+1 = 26 (nhận)
vậy x=5 và y=1hoac x=1 và y= 5 thỏa mãn đề bài
3x^2-y^2-2xy-2x-2y+40=0
<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0
Đặt x-y=a: 3x+y=b
PT<=>ab+a-b-1=-41
<=>(b+1)(a-1)=-41
Đến đây bạn tự giải nốt nha. cho xin phát :)