K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

Giair:

Vận tốc của ô tô trong nữa quãng đường còn lại: 40km/h + 10km/h = 50km/h

Nửa quãng đường đầu ô tô đi mất : 60 : 40 = 1,5 giờ = 1 giờ 30 phút

Nửa quãng đường sau ô tô đi mất :  60 : 50 = 1,2 giờ = 1 giờ 12 phút 

Tổng thời gian cả 2 lần đi :  1 giờ 30 phút + 1 giờ 12 phút = 2 giờ 42 phút = 2,7 giờ

Thời gian ô tô dự định đi : 2,7 + 1 = 3,7 (giờ)

Từ đó ta có thể suy ra được quãng đường AB : 40 x 3,7 =148 (km)

Đáp số : 148 km 

7 tháng 4 2020

Gọi x = AB ;C là điểm ô tô tăng tốc 

=> Thời gian dự định đi hết AB là \(\frac{x}{40}\)

Quãng đường ô tô đi với vận tốc 40km/h là AC = \(\frac{x}{2}-60\)

=> Thời gian đi là : \(\left(\frac{x}{2}-60\right):40\)

Quãng đường ô tô đi với vận tốc 50km/h là : \(CB=\frac{x}{2}+60\)

=> Thời gian đi là \(\frac{\frac{x}{2}+60}{50}\) 

Vì đến sớm hơn 1 giờ nên ta có phương trình : 

\(\frac{\frac{x}{2}-60}{40}+\frac{\frac{x}{2}+60}{50}=\frac{x}{40}-1\)

=> x = 2. ( 40 + 50 - 60 + 60 ) = 280 <=> x = 280 

Vậy quãng đường AB  dài 280 km

7 tháng 4 2020

BĐT bên trái hiển nhiên là Nesbitt.

BĐT bên phải: 

Sau khi quy đồng, phân tích thành nhân tử các kiểu gì đó thì cần chứng minh:

${a}^{6}b+{a}^{6}c-{a}^{5}{b}^{2}-{a}^{5}{c}^{2}-{a}^{2}{b}^{5}-{a}^{2} {c}^{5}+a{b}^{6}+a{c}^{6}+{b}^{6}c-{b}^{5}{c}^{2}-{b}^{2}{c}^{5}+b{c}^ {6} \geqq 0$

Giả sử $c=\min\{a,b,c\}$. Ta cần chứng minh:

Đặt $a=c+x,b=c+y,c=c$ thì $x,y \geqq 0$.

Cần chứng minh: 

$\left( 8\,{x}^{2}-8\,xy+8\,{y}^{2} \right) {c}^{5}+10\, \left( x+y  \right)  \left( 2\,{x}^{2}-3\,xy+2\,{y}^{2} \right) {c}^{4}+ \left(  20\,{x}^{4}-20\,{x}^{2}{y}^{2}+20\,{y}^{4} \right) {c}^{3}+5\, \left(  x+y \right)  \left( xy \left( 7\,{x}^{2}-13\,xy+7\,{y}^{2} \right) +2 \, \left( x-y \right) ^{4} \right) {c}^{2}+ \left( xy \left( xy  \left( 29\,{x}^{2}-56\,xy+29\,{y}^{2} \right) +16\, \left( x-y  \right) ^{4} \right) +2\, \left( x-y \right) ^{6} \right) c+xy  \left( x+y \right)  \left( {x}^{2}+{y}^{2} \right)  \left( x-y  \right) ^{2} \geqq 0$

P/s: Bài này SOS bằng tay đẹp lắm mà thôi tạm thời làm biếng nên không SOS, dùng BW cho nhanh:P

14 tháng 4 2020

SOS của tth_new ghê vãi,đề nghị tth_new check fb giúp t,nói mãi -_-

KMTTQ giả sử \(a\ge b\ge c\)

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Leftrightarrow\left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)+\left(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}\right)+\left(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)

\(\Leftrightarrow a\left(\frac{a}{b^2+c^2}-\frac{a}{b+c}\right)+b\left(\frac{b}{c^2+a^2}-\frac{b}{c+a}\right)+c\left(\frac{c}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)

\(\Leftrightarrow a\left[\frac{ab+ac-b^2-c^2}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{bc+ba-c^2-a^2}{\left(c+a\right)\left(c^2+a^2\right)}\right]+c\left[\frac{ca+cb-a^2-b^2}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow a\left[\frac{b\left(a-b\right)+c\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{c\left(b-c\right)+a\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]+c\left[\frac{a\left(c-a\right)+b\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow\Sigma\left[\frac{ab\left(a-b\right)}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{ab\left(a-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\)

\(\Leftrightarrow\Sigma ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\) ( đúng )

Vậy ta có ĐPCM

7 tháng 4 2020

Ty nhi ha

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:A. BD = 20/7 cm; CD = 15/7cm. B. BD = 15/7 cm; CD = 20/7 cmC. BD = 1,5 cm; CD = 2,5 cmD. BD = 2,5 cm; CD = 1,5 cmBài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:A. DA = 8/3 ; DC = 10/3B. DA = 10/3; DC = 8/3C. DA = 4; DC = 2D. DA = 2,5; DC = 2,5Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:

A. BD = 20/7 cm; CD = 15/7cm. 

B. BD = 15/7 cm; CD = 20/7 cm

C. BD = 1,5 cm; CD = 2,5 cm

D. BD = 2,5 cm; CD = 1,5 cm

Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:

A. DA = 8/3 ; DC = 10/3

B. DA = 10/3; DC = 8/3

C. DA = 4; DC = 2

D. DA = 2,5; DC = 2,5

Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:

A. 1/AB + 1/AC = 2/AD

B. 1/AD + 1/AC = 1/AB

C. 1/ AB + 1/AC = 1/AD

D. 1/AB + 1/AC = 1

Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :

A. x = 14

B. x = 12

C. x = 8

D. Một kết quả khác

Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :

A.10

B.10_5/7

C.14

D.14_2/7

Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:

A. 1/4

B. 1/2

C. 3/4

D.1/3

Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:

A. 3,5

B.5

C. 40/7

D.6

Bài 8: 

Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:

A.  ME//AC

B. góc AEF = 50°

C. Góc FMC = 50°

D. MB/MA= FA/FC

Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc: 

A. DA = 3cm

B. DB = 5cm

C. AC = 6cm

D. Cả 3 đều đúng

   😨😨 Lm ơn giúp mk lm đc ko thời hạn là trc 7h sáng ngày 7/4 cảm ơn các bn nhiều lm

1
7 tháng 4 2020

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:

A. BD = 20/7 cm; CD = 15/7cm. 

B. BD = 15/7 cm; CD = 20/7 cm

C. BD = 1,5 cm; CD = 2,5 cm

D. BD = 2,5 cm; CD = 1,5 cm

Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:

A. DA = 8/3 ; DC = 10/3

B. DA = 10/3; DC = 8/3

C. DA = 4; DC = 2

D. DA = 2,5; DC = 2,5

Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:

A. 1/AB + 1/AC = 2/AD

B. 1/AD + 1/AC = 1/AB

C. 1/ AB + 1/AC = 1/AD

D. 1/AB + 1/AC = 1

Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :

A. x = 14

B. x = 12

C. x = 8

D. Một kết quả khác

Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :

A.10

B.10_5/7

C.14

D.14_2/7

Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:

A. 1/4

B. 1/2

C. 3/4

D.1/3

Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:

A. 3,5

B.5

C. 40/7

D.6

Bài 8: 

Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:

A.  ME//AC

B. góc AEF = 50°

C. Góc FMC = 50°

D. MB/MA= FA/FC

Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc: 

A. DA = 3cm

B. DB = 5cm

C. AC = 6cm

D. Cả 3 đều đúng

7 tháng 4 2020

|x| + |y| = 6

<=> ( |x| + |y| )2 = 36

<=> |x|2 + 2|x|.|y| + |y|2 = 36

<=> x2 + 2|x|.|y| + y2 = 36

Vì x2 + y2 = 26

<=> 26 + 2|x|.|y| = 36

<=> 2|x|.|y| = 10

<=> |x|.|y| = 5

Ta có : \(\hept{\begin{cases}\left|x\right|\cdot\left|y\right|=5\\\left|x\right|+\left|y\right|=6\end{cases}}\)

<=> (|x|;|y|) ∈ {(5;1);(1;5)}

<=> (x;y) ∈ {(5;1);(-5;-1);(1;5);(-1;-5)}

Vậy ...

7 tháng 4 2020

vì lxl+lyl=6 và x2 +y2 =26 nên x,y>0,

=>  6= 3+3=2+4=4+2=1+5=5+1

xét trường hợp x + y= 3+3=6 và x2 + y=3+ 32 = 9+9= 18 (loại)

xét trường hợp x + y= 2+4=6 và x2 + y=2+ 42 = 4+16 = 20 (loại)

xét trường hợp x + y= 4+2=6 và x2 + y=4+ 22 = 16+4 = 20 (loại)

xét trường hợp x + y= 1+5=6 và x2 + y=1+ 52 = 1+25 = 26 (nhận)

xét trường hợp x + y= 5+1=6 và x2 + y=5+ 12 = 25+1 = 26 (nhận)

vậy x=5 và y=1hoac x=1 và y= 5 thỏa mãn đề bài

7 tháng 4 2020

3x^2-y^2-2xy-2x-2y+40=0

<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0

Đặt x-y=a: 3x+y=b

PT<=>ab+a-b-1=-41

<=>(b+1)(a-1)=-41

  Đến đây bạn tự giải nốt nha. cho xin phát :)

7 tháng 4 2020

nguyễn trí tâm tks bn

= 1800 nha 

-Tk cho mk nha-

  -Mk cảm ơn-

1800 ạ 

Ước cs ai onl đêm vs mình

7 tháng 4 2020

Gọi vận tốc xe du lịch là: x (km/h;x>0).

Vận tốc xe tải là: x+5(km/h) 

Thời gian xe tải đi là: 1h

Vì xe tải xuất phát sau xe khách là nửa tiếng nên thời gian xe du lịch đi là: 1,5h

Quãng đường xe du lịch đi là: 1,5x(km)

Quãng đường xe tải đi là: 1(x+5)=x+5(km)

Vì hai xe chuyển động ngược chiều nên đến khi gặp nhau, tổng quãng đường hai xe đi được bằng quãng đường AB, ta có phương trình:

1,5x+x+5=100

Giải phương trình:

1,5x+x+5=100

<=>2,5x=95

<=>x=38

Vận tốc của xe du lịch là:38(km/h) 

Vận tốc của xe tải là: 38+5=43(km/h) 

13 tháng 4 2020

8+6=           9+5=        6+2=          7+8=        4+3=                      2:   9+5 ..... 14.          100-28 ..... 9.         5x5 ..... 9x1.