K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

\(C=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

Ta co:

\(\sqrt{x}-1+\frac{2}{\sqrt{x}}=\frac{x-\sqrt{x}+2}{\sqrt{x}}=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}{\sqrt{x}}>0\)

\(\Rightarrow\sqrt{x}-1>-\frac{2}{\sqrt{x}}\)

13 tháng 9 2019

\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)

\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)

a.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\) 

\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)

\(\Leftrightarrow3>2\)

Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)

Lát mình giải 2 câu kia,di ăn com cái

13 tháng 9 2019

b.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)

\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)

\(\Leftrightarrow x>0\)

Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)

c.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)

\(\Leftrightarrow x-4\sqrt{x}+5< 0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)

Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)

13 tháng 9 2019

a) MA,MB là các tiếp tuyến của đường tròn (O) (gt).
Theo tính chất của hai tiếp tuyến cắt nhau, ta có MA=MB, MO là tia phân giác AMBˆ
ΔMAB cân tại M(MA=MB)
Có MO là đường phân giác nên đồng thời là đường cao
=>MOAB=>MEAˆ=900
Chứng minh tương tự có MO’ là tia phân giác góc AMCˆ  MFAˆ=900
MO,MO là tia phân giác của hai góc kẻ bù AMBˆ,AMCˆEMFˆ=900 
Tứ giác AEMF là hình chữ nhật (vì EMFˆ=MEAˆ=MFAˆ=900 
b) ΔMAO vuông tại A có AE là đường cao nên ME.MO=MA2
Tương tự, ta có: MF.MO=MA2
Do đó, ME.MO=MF.MO(=MA2)

13 tháng 9 2019

\(\left(a+b-\frac{2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\left(a+b-\frac{2\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\left(a+b-2\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

\(=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)

13 tháng 9 2019

\(\hept{\begin{cases}y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}=\frac{x^4+1}{x^4-1}=a\\z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}=\frac{x^8+1}{x^8-1}\end{cases}}\)

\(\Rightarrow x^4=\frac{y+1}{y-1}\)

Thế vô z được

\(z=\frac{\left(\frac{y+1}{y-1}\right)^2+1}{\left(\frac{y+1}{y-1}\right)-1}=\frac{y^2+1}{2y}\)

Giờ thì thế \(y=\sqrt{2}+\sqrt{3}\)vô đi