Tìm GTNN của A= \(\sqrt{\frac{x^2}{4}-\frac{x}{6}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Vì p,q là số nguyên tố nên p,q>1.Từ đây cho ta thấy rằng r>2
Vậy r lẻ,do đó \(p^q+q^p\)lẻ
Do đó trong 2 số p và q phải có 1 số chẵn và số còn lại lẻ, vì biểu thức \(p^q+q^p\)đối xứng vai trò giữa p,q nên ta giả sử p=2
Khi đó \(2^q+q^2=r\)
Thử trực tiếp ta thấy q=3,r=17 thỏa mãn
Với q>3 suy ra q2 chia 3 dư 1 và đặt q=2k+1=>\(2^q+q^2=2.4^k+q^2\equiv2+1\equiv3\left(mod3\right)\)
Do đó r chia hết cho 3 mà dễ thấy r>3 nên r là hợp số
Vậy (p;q;r)=(2;3;17);(3;2;17)

\(A=\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{5\sqrt{5}+5-5-\sqrt{5}}{\sqrt{5^2}-1}=\frac{5\sqrt{5}-\sqrt{5}}{5-1}=\frac{4\sqrt{5}}{4}=\sqrt{5}\)

Rút Gọn:
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{4}{x}-1}\)
\(=\frac{2\sqrt{x-4}}{\frac{4-x}{x}}\)
\(=-\frac{2x\sqrt{x-4}}{x-4}\)
\(=\frac{-2x}{\sqrt{x-4}}\)

