Cho các điểm M, N, P theo thứ tự thuộc các cạnh BC, CA, AB của tam giác ABC cân tại A sao cho tứ giác MNAP là hình bình hành. Gọi O là giao điểm của BN và CP. Chứng minh \(\widehat{OMP}\)= \(\widehat{AMN}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khai triển nó ra,ta có:
\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)
Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(\Sigma x\cdot\left(y+z\right)\)
Rút gọn dc như vậy rồi chị làm nốt ạ
\(y=\sqrt{x^2+2x+4}\)
\(\Leftrightarrow y^2=x^2+2x+4\)
\(\Leftrightarrow y^2=\left(x+1\right)^2+3\)
\(\Leftrightarrow\left(y-x-1\right)\left(y+x+1\right)=3\)
Đến đây bạn lập bảng ạ