K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2024

ko biết nha bé

30 tháng 6 2024

Vì nó không được tiếp xúc với không khí mát mẻ

30 tháng 6 2024

đéo hiểu

 

30 tháng 6 2024

@Nam Lê Thanh

Bạn xem lại cách sử dụng từ ngữ của mình đi ạ! Bạn nên tránh nói những từ như vậy vì nó thể hiện bạn là một người không văn minh lịch sự. Trân trọng!

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

$a^2+b^2=2\Leftrightarrow (a+b)^2=2+2ab=2(ab+1)$

$\Leftrightarrow (a+b)^2=2(a^3+b^3)=2(a+b)(a^2-ab+b^2)$

$\Leftrightarrow (a+b)^2=2(a+b)(2-ab)$

$\Leftrightarrow (a+b)[(a+b)-2(2-ab)]=0$

Nếu $a+b=0$

$\Rightarrow ab+1=a^3+b^3=a^3+(-a)^3=0\Rightarrow ab=-1$

Nếu $a+b-2(2-ab)=0$

$\Leftrightarrow a+b=4-2ab$

$\Rightarrow (a+b)^2=(4-2ab)^2$

$\Leftrightarrow a^2+b^2+2ab=16+4a^2b^2-16ab$

$\Leftrightarrow 2+2ab=16+4a^2b^2-16ab$

$\Leftrightarrow 4a^2b^2-18ab+14=0$

$\Leftrightarrow 2a^2b^2-9ab+7=0$

$\Leftrightarrow (ab-1)(2ab-7)=0$

$\Rightarrow ab=1$ hoặc $ab=\frac{7}{2}$

Thử lại:

Nếu $ab=-1\Rightarrow a^3+b^3=1+ab=0\Rightarrow a=-b$.

$\Rightarrow -1=ab=a.(-a)=-a^2\Rightarrow a^2=1$

$\Rightarrow a=\pm 1\Rightarrow b=\mp 1$

Nếu $ab=1\Rightarrow (a+b)^2=2+2ab=4\Rightarrow a+b=\pm 2$

$a^3+b^3=1+ab=2$

$\Leftrightarrow (a+b)^3-3ab(a+b)=2$

$\Leftrightarrow (a+b)^3-3(a+b)=2$. Thay $a+b=2$ và $a+b=-2$ vào thấy $a+b=2$.

Từ $ab=1, a+b=2\Rightarrow a(2-a)=1$

$\Rightarrow (a-1)^2=0\Rightarrow a=1\Rightarrow b=1$.

Nếu $ab=\frac{7}{2}$:

$(a-b)^2=a^2+b^2-2ab=2-2.\frac{7}{2}=-5<0$ (vô lý - loại)

Vậy $ab=\pm 1$
Với $ab=1$ thì $a=b=1$
Với $ab=-1$ thì $(a,b)=(1,-1)$ hoặc $(a,b)=(-1,1)$

30 tháng 6 2024

bài 1 Viết đoạn văn khoảng 8 câu chỉ ra một từ ghép vàmột từ láy trong đoạn

 

ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)

\(P=\dfrac{x+2}{x^2-4x+4}:\left(\dfrac{6-x^2}{x^2-2x}-\dfrac{1}{2-x}+\dfrac{x+2}{x}\right)\)

\(=\dfrac{x+2}{\left(x-2\right)^2}:\left(\dfrac{6-x^2}{x\left(x-2\right)}+\dfrac{1}{x-2}+\dfrac{x+2}{x}\right)\)

\(=\dfrac{x+2}{\left(x-2\right)^2}:\dfrac{6-x^2+x+\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}\)

\(=\dfrac{x+2}{\left(x-2\right)^2}\cdot\dfrac{x\left(x-2\right)}{6-x^2+x+x^2-4}\)

\(=\dfrac{x+2}{x-2}\cdot\dfrac{x}{x+2}=\dfrac{x}{x-2}\)

\(\left(x-y-z\right)^2-\left(x-y\right)^2+2x-yz\)

\(=\left(x-y\right)^2-2z\left(x-y\right)+z^2-\left(x-y\right)^2+2x-yz\)

\(=-2z\left(x-y\right)+z^2+2x-yz\)

\(=-2xz+2yz+z^2+2x-yz=z^2+2x-2xz+yz\)

30 tháng 6 2024

Em nên viết bằng công thức toán học có biểu tượng\(\Sigma\) góc trái màn hình, để mọi người có thể hiểu đúng đề và trợ giúp tốt nhất cho tài khoản vip  em nhé!

3mm=0,3cm\(=\dfrac{3}{10}cm\)

30 tháng 6 2024

3/10 nhe

DT
30 tháng 6 2024

\(P=4x^2+2y^2-4xy-4x-8y+2050\\ =\left(4x^2-4xy+y^2\right)+y^2-4x-8y+2050\\ =\left(2x-y\right)^2-2.\left(2x-y\right).1+1^2+y^2-10y+2049\\ =\left(2x-y-1\right)^2+\left(y^2-10y+25\right)+2024\\ =\left(2x-y-1\right)^2+\left(y-5\right)^2+2024\ge2024\forall x,y\)

Dấu = xảy ra khi: \(\left(2x-y-1\right)^2=\left(y-5\right)^2=0\\ \Leftrightarrow\left(x;y\right)=\left(3;5\right)\)

Vậy min P = 2024 tại (x;y)=(3;5)

DT
30 tháng 6 2024

Dãy số lẻ thỏa mãn đề bài: 3; 5; 7; 9; ... ; 103

Vì dãy trên là dãy cách đều 

Nên trung bình cộng là: (103+3):2=53

30 tháng 6 2024

Do khi chia x cho 2; 3; 4; 5; 6 đều dư 1 nên x - 1 chia hết cho 2; 3; 4; 5; 6

x - 1 BC(2; 3; 4; 5; 6)

Ta có:

2 = 2

3 = 3

4 = 2²

5 = 5

6 = 2.3

⇒ BCNN(2; 3; 4; 5; 6) = 2².3.5 = 60

⇒ x - 1 ∈ BC(2; 3; 4; 5; 6) = B(60) = {0; 60; 120; 180; 240; 300; ...}

⇒ x ∈ {1; 61; 121; 181; 241; 301; ...}

Mà 301 ⋮ 7

⇒ x = 301