K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8 2024

Với mọi x;y dương ta có:

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)

\(\Leftrightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow\sqrt{x^2+y^2}\ge\dfrac{x+y}{\sqrt{2}}\)

Áp dụng:

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\dfrac{a+b}{\sqrt{2}}+\dfrac{b+c}{\sqrt{2}}+\dfrac{c+a}{\sqrt{2}}=\sqrt{2}\left(a+b+c\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

- Với BĐT bên phải: \(\sqrt{3}\left(a+b+c\right)>\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)}\)

\(\Leftrightarrow\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{6\left(a^2+b^2+c^2\right)}\)

Nên ta chỉ cần chứng minh:

\(\sqrt{3}\left(a+b+c\right)>\sqrt{6\left(a^2+b^2+c^2\right)}\)

\(\Leftrightarrow\left(a+b+c\right)^2>2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)

Thật vậy, do a, b, c là 3 cạnh của 1 tam giác nên theo BĐT tam giác:

\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2< a\left(b+c\right)\\b^2< b\left(c+a\right)\\c^2< c\left(a+b\right)\end{matrix}\right.\)

Cộng vế: 

\(a^2+b^2+c^2< 2ab+2bc+2ca\) (đpcm)

7 tháng 8 2024

Sửa lại Gia đình bà Vân gồm 4 người lớn và 3 trẻ em thanh toán \(110000\) đồng thành \(1100000\) đồng

Gọi giá buffet của người lớn và trẻ em lần lượt là \(x;y\left(x;y>0\right)\)

Tổng số tiền ông Khanh : \(5x+5y=1500000\)

\(\Rightarrow x+y=300000\left(2\right)\)

Tổng số tiền nhà bà Vân : \(4x+3y=1100000\left(2\right)\)

\(\left(1\right);\left(2\right)\) ta có HPT :

\(\left\{{}\begin{matrix}x+y=300000\\4x+3y=1100000\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+4y=1200000\\4x+3y=1100000\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=300000\\y=100000\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=200000\\y=100000\end{matrix}\right.\)

Vậy giá buffet của người lớn và trẻ em lần lượt là \(200000\left(đồng\right);100000\left(đồng\right)\)

NV
7 tháng 8 2024

Em kiểm tra lại đề, rất có thể ở dữ liệu nhà bà Vân em ghi thiếu 1 số 0 ở con số 110 000, lẽ ra phải là 1 100 000 mới hợp lý

Câu 2:

a: \(cosa=0\)

=>\(a=90^0\)

b: \(tana=\dfrac{\sqrt{3}}{3}\)

=>\(a=arctan\left(\dfrac{\sqrt{3}}{3}\right)=30^0\)

c: \(cota-sin90^0=0\)

=>\(cota=sin90^0=1\)

=>\(a=45^0\)

d: \(tana=\dfrac{sina}{cota}\)

=>\(\dfrac{sina}{cosa}=\dfrac{sina}{cota}\)

=>\(cota=cosa\)

=>\(cosa\left(\dfrac{1}{sina}-1\right)=0\)

=>\(\left[{}\begin{matrix}cosa=0\\sina=1\end{matrix}\right.\Leftrightarrow a=90^0\)

 

NV
7 tháng 8 2024

ĐKXĐ: \(x\ge-\dfrac{1}{4}\)

- Với \(-\dfrac{1}{4}\le x\le0\Rightarrow\left\{{}\begin{matrix}x^4< \dfrac{1}{4^4}< 1\\\sqrt[4]{4x+1}\ge0\Rightarrow4\sqrt[4]{4x+1}+1\ge1\end{matrix}\right.\)

\(\Rightarrow x^4< 4\sqrt[4]{4x+1}+1\) nên pt vô nghiệm

- Với \(x>0\):

Đặt \(\sqrt[4]{4x+1}=a>0\Rightarrow4x+1=a^4\) 

Ta được hệ:

\(\left\{{}\begin{matrix}x^4=4a+1\\a^4=4x+1\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow x^4-a^4=4\left(a-x\right)\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)\left(x^2+a^2\right)+4\left(x-a\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left[\left(x+a\right)\left(x^2+a^2\right)+4\right]=0\)

\(\Leftrightarrow x=a\) (do \(\left(x+a\right)\left(x^2+a^2\right)+4>0\) với \(a;x>0\))

\(\Leftrightarrow x=\sqrt[4]{4x+1}\)

\(\Leftrightarrow x^4=4x+1\)

\(\Leftrightarrow x^4-4x-1=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(2x^2+4x+2\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x+1\right)^2=0\)

\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\) (do \(x>0\) nên chỉ có TH này xảy ra khi khai căn)

\(\Leftrightarrow x^2-\sqrt{2}x+1-\sqrt{2}=0\)

Pt bậc 2 bình thường, em có thể tính delta và giải theo công thức nghiệm

NV
7 tháng 8 2024

4.

a. 

Áp dụng đẳng thức: \(sin^2\alpha+cos^2\alpha=1\)

\(\Rightarrow\left(\dfrac{1}{3}\right)^2+cos^2\alpha=1\)

\(\Rightarrow cos^2\alpha=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)

\(\Rightarrow cos\alpha=\dfrac{2\sqrt{2}}{3}\) (do \(\alpha\) nhọn nên \(cos\alpha>0\))

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{1}{3}:\dfrac{2\sqrt{2}}{3}=\dfrac{\sqrt{2}}{4}\)

b.

\(P=sin^21^0+sin^289^0+sin^22^0+sin^288^0+...+sin^244^0+sin^246^0+sin^245^0+sin^290^0\)

\(=sin^21^0+sin^2\left(90^0-1^0\right)+sin^22^0+sin^2\left(90^0-2^0\right)+...+sin^244^0+sin^2\left(90^0-44^0\right)+\left(\dfrac{\sqrt{2}}{2}\right)^2+1^2\)

\(=sin^21^0+cos^21^0+sin^22^0+cos^22^0+...+sin^244^0+cos^244^0+\dfrac{3}{2}\)

\(=1+1+...+1+\dfrac{3}{2}\) (có 44 số 1)

\(=44+\dfrac{3}{2}=\dfrac{91}{2}\)

c.

\(\dfrac{1-tan\alpha}{1+tan\alpha}=\dfrac{1-\dfrac{sin\alpha}{cos\alpha}}{1+\dfrac{sin\alpha}{cos\alpha}}=\dfrac{\dfrac{cos\alpha-sin\alpha}{cos\alpha}}{\dfrac{cos\alpha+sin\alpha}{cos\alpha}}=\dfrac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)

7 tháng 8 2024

93

Gọi số cần tìm có dạng là \(\overline{ab}\)

Chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên a-b=6

Nếu đổi chỗ hai chữ số cho nhau thì tổng của số mới và số cũ là 132 nên \(\overline{ab}+\overline{ba}=132\)

=>10a+b+10b+a=132

=>11a+11b=132

=>a+b=12

mà a-b=6

nên \(a=\dfrac{12+6}{2}=9;b=12-9=3\)

Vậy: Số cần tìm là 93

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=12^2-5^2=144-25=119\)

=>\(AC=\sqrt{119}\left(cm\right)\)

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{5^2}{12}=\dfrac{25}{12}\left(cm\right)\\CH=\dfrac{119}{12}\left(cm\right)\end{matrix}\right.\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC=\dfrac{25}{12}\cdot\dfrac{119}{12}=\dfrac{25}{144}\cdot119\)

=>\(AH=\sqrt{119}\cdot\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\cdot\sqrt{119}\left(cm\right)\)

a: \(\dfrac{3x+5}{2}-x>=1+\dfrac{x+2}{3}\)

=>\(\dfrac{3x+5-2x}{2}>=\dfrac{3+x+2}{3}\)

=>\(\dfrac{x+5}{2}-\dfrac{x+5}{3}>=0\)

=>\(\dfrac{3\left(x+5\right)-2\left(x+5\right)}{6}>=0\)

=>\(\dfrac{x+5}{6}>=0\)

=>x+5>=0

=>x>=-5

b: \(\dfrac{x-2}{3}-x-2< =\dfrac{x-17}{2}\)

=>\(\dfrac{2\left(x-2\right)}{6}+\dfrac{6\left(-x-2\right)}{6}< =\dfrac{3\left(x-17\right)}{6}\)

=>\(2\left(x-2\right)+6\left(-x-2\right)< =3\left(x-17\right)\)

=>\(2x-4-6x-12< =3x-51\)

=>-4x-16<=3x-51

=>-7x<=-35

=>x>=5

c: \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}< =\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)

=>\(\dfrac{4\left(2x+1\right)-3\left(x-4\right)}{12}< =\dfrac{2\left(3x+1\right)-x+4}{12}\)

=>4(2x+1)-3(x-4)<=2(3x+1)-x+4

=>8x+4-3x+12<=6x+2-x+4

=>5x+16<=5x+6

=>16<=6(sai)

Vậy: BPT vô nghiệm