Tìm x, y, z biết
\(\dfrac{x-1}{2}\)=\(\text{}\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\)và \(x+y+z=-34\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 My mother is fond of going jogging in the morning
2 My sister finds it difficult to lift weights
3 We collected plastic bottles and sent them to the factory
1 My mother is fond of going jogging in the morning
2 My sister finds it difficult to lift weights
3 We collected plastic bottles and sent them to the factory
1 Reuse means using something again instead of throwing it away
2 Did your school organise a donation drive last winter?
1. You should not eat a large meal before bedtime.
2. It takes him two hours a day to read a book about adventure.
3. Would you like to buy tickets for the concert?
1 You shouldn't eat large meals right before bedtime
2 It takes him two hours a day to read books about adventure
3 Would you like to buy tickets for the concert?
1. His brother goes to the theater once a month.
2. I usually store onions basket in the kitchen shelf.
1 His brother goes to the theater once a month
2 I usually store onions basket on the kitchen shelf
A B C D E K I
a/
Ta có
AD=AB (gt) (1); AC=AE (gt) (2)
\(\widehat{CAD}=\widehat{BAD}+\widehat{A}=90^o+\widehat{A}\)
\(\widehat{BAE}=\widehat{CAE}+\widehat{A}=90^o+\widehat{A}\)
\(\Rightarrow\widehat{CAD}=\widehat{BAE}\) (3)
Từ (1) (2) (3) => tg ACD = tg AEB (c.g.c)
b/
Gọi K là giao của CD và AB; I là giao của CD và BE
tg ACD = tg AEB (cmt) \(\Rightarrow\widehat{ADC}=\widehat{ABE}\) (4)
\(\widehat{AKD}=\widehat{IKB}\) (góc đối đỉnh) (5)
Xét tg vuông ADK có
\(\widehat{ADC}+\widehat{AKD}=90^o\) (6)
Từ (4) (5) (6) \(\Rightarrow\widehat{ABE}+\widehat{IKB}=90^o\)
Xét tg BIK có
\(\widehat{ABE}+\widehat{IKB}=90^o\) (cmt) \(\Rightarrow\widehat{BIK}=90^o\Rightarrow EB\perp CD\)
c/
Ta có \(AE\perp AC\left(gt\right)\) => ED không thể vuông góc với AC được (Từ 1 điểm ở ngoài 1 đưởng thẳng cho trước chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho)
Giải:
a; Theo bài ra ta có hình h1
Xét \(\Delta\)ACD và \(\Delta\)AEB có:
AD = AB(gt)
AC = AE (gt)
\(\widehat{DAC}\) = 900 + \(\widehat{BAC}\)
\(\widehat{BAE}\) = 900 + \(\widehat{BAC}\)
⇒ \(\widehat{DAC}\) = \(\widehat{BAE}\)
Vậy \(\Delta\)ACD = \(\Delta\)AEB (c-g-c)
b; Gọi J, K lần lượt là giao điểm của BE và DC; BE và AC
khi đó: \(\widehat{AKE}\) = \(\widehat{CKJ}\) (vì đối đỉnh)
\(\Delta\)ACD = \(\Delta\)AEB (cmt)
⇒ \(\widehat{AEK}\) = \(\widehat{AEB}\) = \(\widehat{ACD}\) = \(\widehat{KCJ}\)
⇒ \(\widehat{AKE}\) + \(\widehat{AEK}\) = \(\widehat{CKJ}\) + \(\widehat{KCJ}\)
Mặt khác ta có:
\(\widehat{AKE}\) + \(\widehat{AEK}\) + \(\widehat{EAK}\) = 1800 (tổng ba góc trong một tam giác)
\(\widehat{EAK}\) = 900 vì AE \(\perp\) AC theo gt
⇒ \(\widehat{AKE}\) + \(\widehat{AEK}\) = 1800 - 900 = 900
⇒ \(\widehat{CKJ}\) + \(\widehat{KCJ}\) = 900
\(\widehat{BJC}\) = \(\widehat{CKJ}\) + \(\widehat{KCJ}\) = 900 (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
⇒ BE \(\perp\) CD
c; Kéo dài AC cắt DE tại F
Xét tam giác AEF ta có:
\(\widehat{DFA}\) = \(\widehat{FAE}\) + \(\widehat{AEF}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
\(\widehat{FAE}\) = 900 (AE \(\perp\) AC theo gt)
⇒ \(\widehat{DFA}\) = 900 + \(\widehat{AEF}\) > 900
Vậy ED không vuông góc với AC
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{x+y+z-1-2-3}{2+3+4}=\dfrac{-34-6}{9}=\dfrac{-40}{9}\)
=>\(\left\{{}\begin{matrix}x-1=-\dfrac{40}{9}\cdot2=-\dfrac{80}{9}\\y-2=-\dfrac{40}{9}\cdot3=-\dfrac{120}{9}\\z-3=-\dfrac{40}{9}\cdot4=-\dfrac{160}{9}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{80}{9}+1=-\dfrac{71}{9}\\y=-\dfrac{120}{9}+2=-\dfrac{120}{9}+\dfrac{18}{9}=-\dfrac{102}{9}\\z=-\dfrac{160}{9}+3=-\dfrac{160}{9}+\dfrac{27}{9}=-\dfrac{133}{9}\end{matrix}\right.\)