Cho a3+b3+c3=3acb là độ dài 3 cạnh của tam giác. Tam giác đó là tam giác j?
Help!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(\left(x^2+4x+x+4\right)\left(x^2+2x+3x+6\right)-24\)
\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(x^2+5x+4=a\) ta có
\(a.\left(a+2\right)-24\)
\(a^2+2a-24\)
\(a^2+6a-4a-24\)
\(a\left(a+6\right)-4\left(a+6\right)\)
\(\left(a+6\right)\left(a-4\right)\)
\(\left(x^2+5x+4+6\right)\left(x^2+5x+4-4\right)\)
\(\left(x^2+5x+10\right)\left(x^2+5x\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(x^2+5x+5=a\)
Suy ra \(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(a+1\right)\left(a-1\right)-24\)
\(=a^2-1-24=a^2-25=\left(a-5\right)\left(a+5\right)\)
Do đó
\(\left(a+5\right)\left(a-5\right)=x\left(x^2+5x+10\right)\left(x+5\right)\)
Vậy \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=x\left(x^2+5x+9\right)\left(x+5\right)\)
\(x+\frac{7}{x}=9\Leftrightarrow\frac{x^2+7}{x}=9\Leftrightarrow x^2+7=9x\)
\(\Leftrightarrow x^2-9x+7=0\)
Ta có : \(\left(-9\right)^2-4.7=81-28=53\)
\(x_1=\frac{9-\sqrt{53}}{2};x_2=\frac{9+\sqrt{53}}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a+b+c+1\right)^2=\left(a.1+\frac{1}{\sqrt{2}}.\sqrt{2}\left(b+c\right)+\frac{1}{\sqrt{2}}.\sqrt{2}\right)^2\)\(\le\left(a^2+1\right)\text{[}3+2\left(b+c\right)^2\text{]}\)
Khi đó cần CM BĐT : \(\frac{5}{16}\text{[}3+2\left(b+c\right)^2\text{]}\le\left(b^2+1\right)\left(c^2+1\right)\)
Hay: \(16b^2c^2+6\left(b^2+c^2\right)+1\ge20ab\)
BĐT trên đúng theo BĐT AM-GM: \(16b^2c^2+1\ge8bc,6\left(b^2+c^2\right)\ge12bc\)
Dấu '=' xảy ra khi và chỉ khi a=b=c=1/2
TA CÓ: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Do đó: \(\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}\)
\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\ge\frac{3}{4}+\frac{1}{4}.\frac{9}{ab+bc+ca}\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{3}{4}+\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{9}{4}=\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\)
\(\Rightarrow P\ge\frac{1}{30}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}+\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}-\frac{3}{2}\)
\(=\frac{-22}{15}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}+\frac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}\)
\(\ge\frac{-22}{15}+2\sqrt{\left[\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\right]\left[\frac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}\right]}=\frac{-22}{15}+\frac{2}{15}=\frac{-4}{3}\)
Dấu '=' xảy ra <=> a=b=c
Vậy GTNN của P là -4/3 khi a=b=c
Vì a,b,c là độ dài ba cạnh của một tam giác => a,b,c > 0
Sử dụng HĐT a3 + b3 = ( a + b )3 - 3ab( a + b )
a3 + b3 + c3 = 3abc
⇔ a3 + b3 + c3 - 3abc = 0
⇔ ( a3 + b3 ) + c3 - 3abc = 0
⇔ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
⇔ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
⇔ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
⇔ ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0
⇔ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
⇔ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
Vì a,b,c > 0 => a + b + c > 0 => a + b + c = 0 không thể xảy ra
Xét trường hợp còn lại ta có :
a2 + b2 + c2 - ab - bc - ac = 0
⇔ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0
⇔ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
⇔ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
⇔ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
VT luôn ≥ 0 ∀ a,b,c . Dấu "=" xảy ra khi và chỉ khi a = b = c
Kết hợp với điều kiện => a = b = c > 0
=> Tam giác đó là tam giác đều