. Tìm giá trị nguyên của biến x để biểu thức sau có giá trị là một số nguyên
x-2
x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^7-b^7=\left(a-b\right)\left(a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\right)\)
\(a^7-b^7=\left(a-b\right)\left(a^6+a^5b+a^4b^2+a^3b^c+a^2b^4+ab^5+b^6\right)\)
Ê mày đang x,y,z sao lại nhảy sang a,b,c thế :v
Mà sao làm tắt thế '-' Từ đẳng thức kia phải biến đổi tương đương rồi giải chứ duma ==
\(1\)không là nghiệm phương trình, nhân 2 vế với \(x-1\):
\(\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Leftrightarrow x^5-1=0\)
\(\Leftrightarrow x=1\)(loại)
Vậy phương trình vô nghiệm.
Ta có: \(5x^2+10yz\le5\left(x^2+y^2+z^2\right)=9x\left(y+z\right)+18yz\)\(\Leftrightarrow5x^2\le9x\left(y+z\right)+8yz\le9x\left(y+z\right)+2\left(y+z\right)^2\)\(\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-9\left(\frac{x}{y+z}\right)-2\le0\Leftrightarrow\left(\frac{5x}{y+z}+1\right)\left(\frac{x}{y+z}-2\right)\le0\)
\(\Rightarrow\frac{x}{y+z}\le2\)(Do \(\frac{5x}{y+z}+1>0\forall x,y,z>0\))
\(\Leftrightarrow x\le2\left(y+z\right)\Leftrightarrow x+y+z\le3\left(y+z\right)\)
\(\Rightarrow P\le\frac{2x}{\left(y+z\right)^2}-\frac{1}{\left(x+y+z\right)^3}\le\frac{4\left(y+z\right)}{\left(y+z\right)^2}-\frac{1}{\left(3y+3z\right)^3}\)
\(=\frac{4}{y+z}-\frac{1}{27\left(y+z\right)^3}\)
Đặt \(\frac{1}{y+z}=t\)thì \(P\le4t-\frac{1}{27}t^3-16+16=-\frac{1}{27}\left(t-6\right)^2\left(t+12\right)+16\le16\)
Vậy MaxP = 16 khi \(\left(x,y,z\right)=\left(\frac{1}{3},\frac{1}{12},\frac{1}{12}\right)\)
Ta có : 2a2 + 2b2 = 5ab
=> 2a2 + 2b2 - 4ab = 5ab - 4ab
=> 2(a2 + b2 - 2ab) = ab
=> (a - b)2 = ab/2
Lại có 2a2 + 2b2 = 5ab
=> 2a2 + 2b2 + 4ab = 5ab + 4ab
=> 2(a + b)2 = 9ab
=> (a + b)2 = 9ab/2
Ta có P2 = \(\left(\frac{a+b}{a-b}\right)^2=\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\frac{\frac{9ab}{2}}{\frac{ab}{2}}=9\)
=> P = \(\pm\)3
Vậy P = \(\pm\)3
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{\left(x+y\right)-2}\)
Ta cần tìm giá trị nhỏ nhất của \(\frac{\left(x+y\right)^2}{\left(x+y\right)-2}\)
Đặt \(x+y=t\)thì ta có: \(\left(t-4\right)^2\ge0\forall t\Leftrightarrow t^2\ge8t-16\Leftrightarrow\frac{t^2}{t-2}\ge8\)
Vậy MinA = 8 khi và chỉ khi x = y = 2
Bài làm
Ta có : \(\frac{x-2}{x+3}=\frac{x+3-5}{x+3}=1-\frac{5}{x+3}\) ( x khác -3 )
Để biểu thức có giá trị nguyên thì \(\frac{5}{x+3}\)đạt giá trị nguyên
=> 5 chia hết cho ( x + 3 )
=> ( x + 3 ) thuộc Ư(5) = { ±1 ; ±5 }
Các giá trị trên đều thỏa mãn ĐKXĐ
Vậy x thuộc { -8 ; -4 ; -2 ; 2 }