Tìm nghiệm của phương trình: \(x^2-1=2x\sqrt{x^2-2x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT <=> \(x^2-1=2x\sqrt{x\left(x-2\right)}\)
bình phương 2 vế ta được : \(x^4-2x^2+1=4x^3\left(x-2\right)\)
\(x^4-2x^2+1=4x^4-8x^3\)
\(-3x^4-2x^2+8x^3+1=0\)
a, ĐK : \(x\ne-1;-2\)
\(\frac{2}{x+1}-\frac{3}{x+2}=\frac{1}{2}\Leftrightarrow\frac{2\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{3\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+2\right)\left(x+1\right)}\)
Khử mẫu : \(2x+4-3x-3=x^2+x+2x+2\)
\(\Leftrightarrow-x+1=x^2+3x+2\Leftrightarrow-x^2-4x-1=0\)
giải delta nốt nhé !
b;c tương tự
\(\text{áp dụng định lý viet ta có: }\)
\(x_1+x_2=2k;x_1x_2=2k^2+\frac{4}{k^2}-5\)
\(\Rightarrow E=4k^2\left(2k^2+\frac{4}{k^2}-5\right)=8k^4-20k^2+16\)
ta tìm min và max cuả
\(2k^4-5k^2+4\)
hay min và max của \(2k^4-5k^2\text{ thấy ngay: }max_{2k^4-5k^2}=\text{ vô hạn}\)
\(8\left(2k^4-5k^2\right)=16k^4-40k^2=\left(4k^2-5\right)^2-25\ge-25\)
dấu bằng bạn tự tìm