K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt 6x+7=a

Phương trình sẽ trở thành \(\left(a+1\right)\left(a-1\right)\cdot a^2=72\)

=>\(a^2\left(a^2-1\right)=72\)

=>\(a^4-a^2-72=0\)

=>\(\left(a^2-9\right)\left(a^2+8\right)=0\)

mà \(a^2+8>0\forall a\)

nên \(a^2-9=0\)

=>(a-3)(a+3)=0

=>(6x+7-3)(6x+7+3)=0

=>(6x+4)(6x+10)=0

=>\(\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

DT
5 tháng 6 2024

\(\left(6x+8\right)\left(6x+6\right)\left(6x+7\right)^2=72\left(^∗\right)\)

Đặt: \(6x+7=t\)

\(\left(^∗\right)\Rightarrow\left(t+1\right)\left(t-1\right)t^2=72\\ \Leftrightarrow\left(t^2-1\right)t^2=72\\ \Leftrightarrow t^4-t^2-72=0\\ \Leftrightarrow\left(t^4-9t^2\right)+\left(8t^2-72\right)=0\\ \Leftrightarrow t^2\left(t^2-9\right)+8\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2+8\right)\left(t^2-9\right)=0\\ \Leftrightarrow\left(t^2+8\right)\left(t-3\right)\left(t+3\right)=0\\ \)

\(\Rightarrow\left[{}\begin{matrix}t^2+8=0\left(PTVN\right)\\t-3=0\\t+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

Vậy pt có tập nghiệm: \(S=\left\{-\dfrac{2}{3};-\dfrac{5}{3}\right\}\)

2 tháng 6 2024

Đáp án + Giải thích các bước giải:

Gọi x ( m ) là chiều dài ban đầu của khu vườn hình chữ nhật ( x∈N, x > 0 )

Gọi y ( m )  là chiều rộng ban đầu của khu vườn hình chú nhật ( y∈N , y > 0 )

Một khu vườn hình chữ nhật có chu vi là 200 m, nên ta có phương trình:

( x + y ) . 2 = 200 

⇔ 2x + 2y = 200 ( 1 )

Do mở rộng đường giao thông nông thôn nên chiều dài vườn giảm 8 m và biết diện tích đất còn lại là 2080 cm² dùng để trồng cây, nên ta có phương trình:

( x - 8 ) . y = 2080  ( 2 )

Ta có: ( 1 )

2x + 2y = 200 

⇔ x + y = 100 

⇔ x = 100 - y 

Thay y vào ( 2 ), ta được:

( 100 -  y  - 8 ) . y  = 2080 

⇔ 92y - y² = 2080

⇔ - y² + 92y - 2080 = 0 

Giải phương trình, ta được:

{y=52y=40{�=52�=40 

=> 100 - 52 = 48 ( nhận )

=> 100 - 40 = 60 ( nhận )

Vậy chiều dài là 60 m và chiều rộng là 48 - 8 = 40 m

31 tháng 5 2024

Xét tam giác AEB và tam giác CFD ta có 

AB = CD (tứ giác ABCD là hbn); ^ABE = ^CDF ( soletrong ) ; DF = BE (gt) 

Vậy tam giác AEB = tam giác CFD ( c.g.c ) 

=> AE = FC ( 2 cạnh tương ứng ) (1)

tương tự với tam giác AFD = tam giác EBC 

=> AF = EC (2) 

Từ (1) ; (2) => tứ giác AECF là hbh => AE // CF 

 

31 tháng 5 2024

Xét tam giác AEB và tam giác CFD ta có 

AB = CD (tứ giác ABCD là hbn); ^ABE = ^CDF ( soletrong ) ; DF = BE (gt) 

Vậy tam giác AEB = tam giác CFD ( c.g.c ) 

=> AE = FC ( 2 cạnh tương ứng ) (1)

tương tự với tam giác AFD = tam giác EBC 

=> AF = EC (2) 

Từ (1) ; (2) => tứ giác AECF là hbh => AE // CF 

AH
Akai Haruma
Giáo viên
28 tháng 5 2024

Lời giải:

a. Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ 

$AH=2S_{ABC}:BC=AB.AC:BC=6.8:10=4,8$ 

b.

Xét tam giác $AEH$ và $AHB$ có:

$\widehat{A}$ chung

$\widehat{AEH}=\widehat{AHB}=90^0$

$\Rightarrow \triangle AEH\sim \triangle AHB$ (g.g)

$\Rightarrow \frac{AE}{AH}=\frac{AH}{AB}$

$\Rightarrow AH^2=AE.AB(1)$
Hoàn toàn tương tự: $\triangle AFH\sim \triangle AHC$

$\Rightarrow AH^2=AF.AC(2)$

Từ $(1); (2)\Rightarrow AE.AB=AF.AC$

c.

$HE\perp AB, AB\perp AC$ nên $HE\parallel AC$

Tam giác vuông $BEH$ vuông tại $E$ có trung tuyến $EM$ ứng với cạnh huyền $BH$

nên $EM=\frac{BH}{2}=MH$

$\Rightarrow EMH$ cân tại $M$

$\Rightarrow \widehat{MEH}=\widehat{MHE}=\widehat{HCA}(3)$ (2 góc đồng vị)

Tứ giác $AEHF$ có 3 góc $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hcn. 

$\Rightarrow \widehat{HEF}=\widehat{HAF}=\widehat{HAC}(4)$

Từ $(3); (4)\Rightarrow \widehat{MEH}+\widehat{HEF}=\widehat{HCA}+\widehat{HAC}$

$\Rightarrow \widehat{MEF}=\widehat{HCA}+\widehat{HAC}=90^0$

$\Rightarrow EM\perp EF$

AH
Akai Haruma
Giáo viên
28 tháng 5 2024

Hình vẽ:

a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có

\(\widehat{IAB}\) chung

Do đó: ΔAIB~ΔAEC

=>\(\dfrac{AI}{AE}=\dfrac{AB}{AC}\)

=>\(AI\cdot AC=AB\cdot AE\)

b: Xét ΔCBI vuông tại I và ΔACF vuông tại F có

\(\widehat{BCI}=\widehat{CAF}\)(BC//AF)

Do đó; ΔCBI~ΔACF

=>\(\dfrac{CI}{AF}=\dfrac{CB}{AC}\)

=>\(CB\cdot AF=CI\cdot AC\)

\(AB\cdot AE+CB\cdot AF\)

\(=AI\cdot AC+CI\cdot AC\)

\(=AC\left(AI+CI\right)=AC^2\)

c: Xét tứ giác AECF có \(\widehat{AEC}+\widehat{AFC}=90^0+90^0=180^0\)

nên AECF là tứ giác nội tiếp

=>\(\widehat{FAC}=\widehat{FEC}\)

mà \(\widehat{FAC}=\widehat{BCA}\)(AD//BC)

nên \(\widehat{CEF}=\widehat{BCA}\)

 

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC\)

b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có

\(\widehat{MAH}\) chung

Do đó: ΔAMH~ΔAHB

=>\(\dfrac{AM}{AH}=\dfrac{AH}{AB}\)

=>\(AM\cdot AB=AH^2\)

Xét ΔANH vuông tại N và ΔAHC vuông tại H có

\(\widehat{NAH}\) chung

Do đó: ΔANH~ΔAHC

=>\(\dfrac{AN}{AH}=\dfrac{AH}{AC}\)

=>\(AN\cdot AC=AH^2\)

Do đó: \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN~ΔACB

c: O là trung điểm của BC

mà ΔABC vuông tại A

nên OA=OB=OC

OA=OC nên ΔOAC cân tại O

ΔANM~ΔABC

=>\(\widehat{ANM}=\widehat{ABC}\)

\(\widehat{ANM}+\widehat{OAC}=\widehat{ACB}+\widehat{ABC}=90^0\)

=>MN\(\perp\)AO tại I

 

loading... 

1

a: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và BC=2DE

b: Xét ΔAFB có

D là trung điểm của AB

DI//FB

Do đó: I là trung điểm của AF

Xét ΔAFB có ID//FB

nên \(\dfrac{ID}{FB}=\dfrac{AD}{AB}=\dfrac{1}{2}\)

Xét ΔAFC có IE//FC

nên \(\dfrac{IE}{FC}=\dfrac{AE}{AC}=\dfrac{1}{2}\)

Do đó: \(\dfrac{ID}{FB}=\dfrac{IE}{FC}\)

mà ID=IE(I là trung điểm của DE)

nên FB=FC

=>F là trung điểm của BC

Xét tứ giác AEFD có 

I là trung điểm chung của AF và ED

=>AEFD là hình bình hành

Hình bình hành AEFD có \(\widehat{EAD}=90^0\)

nên AEFD là hình chữ nhật

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(DE=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)

I là trung điêm của DE

=>ID=IE=DE/2=2,5(cm)

=>AI=ED/2=2,5(cm)

ΔABC vuông tại A

mà AF là đường trung tuyến

nên AF=BC/2=5(cm)

Xét ΔABC có

BE,AF là các đường trung tuyến

BE cắt AF tại K

Do đó: K là trọng tâm của ΔABC

=>\(AK=\dfrac{2}{3}AF=\dfrac{2}{3}\cdot5=\dfrac{10}{3}\left(cm\right)\)

AI+IK=AK

=>\(IK+2,5=\dfrac{10}{3}\)

=>\(IK=\dfrac{10}{3}-\dfrac{5}{2}=\dfrac{20}{6}-\dfrac{15}{6}=\dfrac{5}{6}\left(cm\right)\)

a: Để (d) có hệ số góc bằng -2 thì m-1=-2

=>m=-1

b: Thay x=-3 và y=0 vào (d), ta được:

\(-3\left(m-1\right)+2m=0\)

=>-3m+3+2m=0

=>3-m=0

=>m=3

c: Thay x=0 và y=2 vào (d), ta được:

0(m-1)+2m=2

=>2m=2

=>m=1

d: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m-1=-3\\2m\ne4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-2\\m\ne2\end{matrix}\right.\)

=>m=-2

19 tháng 5 2024

a) Tìm 𝑚m để 𝑑d có hệ số góc bằng -2.

Hệ số góc của đường thẳng 𝑑d𝑚−1m1. Để 𝑑d có hệ số góc bằng -2, ta giải phương trình: 𝑚−1=−2

m1=2 𝑚=−2+1

\(\Rightarrow\)m=2+1 𝑚=−1

\(\Rightarrow\)m=1

b) Tìm 𝑚m để 𝑑d cắt trục hoành tại điểm có hoành độ bằng -3.

Khi 𝑑d cắt trục hoành, 𝑦=0y=0, từ đó: (𝑚−1)𝑥+2𝑚=0

(m1)x+2m=0 (𝑚−1)(−3)+2𝑚=0

\(\Rightarrow\)(m1)(3)+2m=0 3(𝑚−1)+2𝑚=0

\(\Rightarrow\)3(m1)+2m=0 3𝑚−3+2𝑚=0

\(\Rightarrow\)3m3+2m=0 5𝑚−3=0

\(\Rightarrow\)5m3=0 5𝑚=3

\(\Rightarrow\)5m=3 𝑚=35

\(\Rightarrow\)m= 3/5

c) Tìm 𝑚m để 𝑑d cắt trục tung tại điểm có tung độ bằng 2.

Khi 𝑑d cắt trục tung, 𝑥=0x=0, khi đó: (𝑚−1)⋅0+2𝑚=2

(m1)0+2m=2

\(\Rightarrow\)2𝑚=2\(\Rightarrow\)2m=2 𝑚=1

\(\Rightarrow\)m=1

d) Tìm 𝑚m để 𝑑d song song với đường thẳng 𝑑1d
: 𝑦=−3𝑥+4y=3x+4.

Đường thẳng 𝑑d sẽ song song với 𝑑1d nếu hệ số góc của 𝑑d bằng hệ số góc của 𝑑1d:     dđ𝑚−1=−3

\(\Rightarrow\) m1=3 𝑚=−3+1

\(\Rightarrow\)m=3+1 𝑚=−2

\(\Rightarrow\)m=2

Kết luận:

a) 𝑚=−1m = -1
b) 𝑚=353/5

c) 𝑚=11
d) 𝑚=−22

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔAHB~ΔCHA

b: Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}=90^0\)

\(\widehat{BDA}+\widehat{DAH}=90^0\)(ΔDAH vuông tại H)

mà \(\widehat{CAD}=\widehat{DAH}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

=>ΔBAD cân tại B

ΔBAD cân tại B

mà BF là đường phân giác

nên BF\(\perp\)AD tại F

Xét ΔEFA vuông tại F và ΔEHB vuông tại H có

\(\widehat{FEA}=\widehat{HEB}\)(hai góc đối đỉnh)

Do đó: ΔEFA~ΔEHB

=>\(\dfrac{EF}{EH}=\dfrac{EA}{EB}\)

=>\(EF\cdot EB=EA\cdot EH\)

c: Xét ΔBAK và ΔBDK có

BA=BD

\(\widehat{ABK}=\widehat{DBK}\)

BK chung

Do đó: ΔBAK=ΔBDK

=>\(\widehat{BAK}=\widehat{BDK}\)

=>\(\widehat{BDK}=90^0\)

=>KD\(\perp\)BC

=>KD//AH

d: Xét ΔBKD có EH//KD

nên \(\dfrac{EH}{KD}=\dfrac{BH}{BD}\)

=>\(\dfrac{EH}{KD}=\dfrac{BH}{BA}\)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(\dfrac{EH}{KD}=\dfrac{BA}{BC}\)

=>\(\dfrac{EH}{BA}=\dfrac{KD}{BC}\)