Tính tổng 3 góc của Tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
so sánh M và N biết: M=\(\dfrac{100^{100}+1}{100^{99}+1}\) và N=\(\dfrac{100^{101}+1}{100^{100}+1}\)
\(\dfrac{M}{100}=\dfrac{100^{100}+1}{100.\left(100^{99}+1\right)}=\dfrac{100^{100}+1}{100^{100}+100}=\dfrac{100^{100}+100-99}{100^{100}+100}=1-\dfrac{99}{100^{100}+100}\)
\(\dfrac{N}{100}=\dfrac{100^{101}+1}{100.\left(100^{100}+1\right)}=\dfrac{100^{101}+1}{100^{101}+100}=\dfrac{100^{101}+100-99}{100^{101}+100}=1-\dfrac{99}{100^{101}+100}\)
Do \(100^{101}>100^{100}\)nên \(100^{101}+100>100^{100}+100\)
\(\Rightarrow-\dfrac{99}{100^{101}+100}>-\dfrac{99}{100^{100}+100}\)
\(\Rightarrow\dfrac{M}{100}>\dfrac{N}{100}\Rightarrow M>N\)
`A = 1/19 + 9/(19.29) + 9/(29.39) + ... + 9/(1999.2009)`
`A = 9/(9.19) + 9/(19.29) + 9/(29.39) + ... + 9/(1999.2009)`
`A = 9/10 . (10/(9.19) + 10/(19.29) + 10/(29.39) + ... + 10/(1999.2009))`
`A = 9/10 . (1/9 - 1/19 + 1/19 - 1/29 + 1/29 - 1/39 + ... + 1/1999 - 1/2009)`
`A = 9/10 . (1/9 - 1/2009) `
`A = 9/10 . 2000/18081`
`A = 200/2009`
\(\dfrac{x+7}{130}+\dfrac{x+5}{128}+\dfrac{x-234}{111}=1\)
\(\left(\dfrac{x+7}{130}-1\right)+\left(\dfrac{x+5}{128}-1\right)+\left(\dfrac{x-234}{111}+1\right)=0\)
\(\dfrac{x-123}{130}+\dfrac{x-123}{128}+\dfrac{x-123}{111}=0\)
\(\left(x-123\right)\left(\dfrac{1}{130}+\dfrac{1}{128}+\dfrac{1}{111}\right)=0\)
\(x-123=0\) (do \(\dfrac{1}{130}+\dfrac{1}{128}+\dfrac{1}{111}>0\))
\(x=123\)
A B C D E K I
a/
Ta có
AD=AB (gt) (1); AC=AE (gt) (2)
\(\widehat{CAD}=\widehat{BAD}+\widehat{A}=90^o+\widehat{A}\)
\(\widehat{BAE}=\widehat{CAE}+\widehat{A}=90^o+\widehat{A}\)
\(\Rightarrow\widehat{CAD}=\widehat{BAE}\) (3)
Từ (1) (2) (3) => tg ACD = tg AEB (c.g.c)
b/
Gọi K là giao của CD và AB; I là giao của CD và BE
tg ACD = tg AEB (cmt) \(\Rightarrow\widehat{ADC}=\widehat{ABE}\) (4)
\(\widehat{AKD}=\widehat{IKB}\) (góc đối đỉnh) (5)
Xét tg vuông ADK có
\(\widehat{ADC}+\widehat{AKD}=90^o\) (6)
Từ (4) (5) (6) \(\Rightarrow\widehat{ABE}+\widehat{IKB}=90^o\)
Xét tg BIK có
\(\widehat{ABE}+\widehat{IKB}=90^o\) (cmt) \(\Rightarrow\widehat{BIK}=90^o\Rightarrow EB\perp CD\)
c/
Ta có \(AE\perp AC\left(gt\right)\) => ED không thể vuông góc với AC được (Từ 1 điểm ở ngoài 1 đưởng thẳng cho trước chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho)
Giải:
a; Theo bài ra ta có hình h1
Xét \(\Delta\)ACD và \(\Delta\)AEB có:
AD = AB(gt)
AC = AE (gt)
\(\widehat{DAC}\) = 900 + \(\widehat{BAC}\)
\(\widehat{BAE}\) = 900 + \(\widehat{BAC}\)
⇒ \(\widehat{DAC}\) = \(\widehat{BAE}\)
Vậy \(\Delta\)ACD = \(\Delta\)AEB (c-g-c)
b; Gọi J, K lần lượt là giao điểm của BE và DC; BE và AC
khi đó: \(\widehat{AKE}\) = \(\widehat{CKJ}\) (vì đối đỉnh)
\(\Delta\)ACD = \(\Delta\)AEB (cmt)
⇒ \(\widehat{AEK}\) = \(\widehat{AEB}\) = \(\widehat{ACD}\) = \(\widehat{KCJ}\)
⇒ \(\widehat{AKE}\) + \(\widehat{AEK}\) = \(\widehat{CKJ}\) + \(\widehat{KCJ}\)
Mặt khác ta có:
\(\widehat{AKE}\) + \(\widehat{AEK}\) + \(\widehat{EAK}\) = 1800 (tổng ba góc trong một tam giác)
\(\widehat{EAK}\) = 900 vì AE \(\perp\) AC theo gt
⇒ \(\widehat{AKE}\) + \(\widehat{AEK}\) = 1800 - 900 = 900
⇒ \(\widehat{CKJ}\) + \(\widehat{KCJ}\) = 900
\(\widehat{BJC}\) = \(\widehat{CKJ}\) + \(\widehat{KCJ}\) = 900 (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
⇒ BE \(\perp\) CD
c; Kéo dài AC cắt DE tại F
Xét tam giác AEF ta có:
\(\widehat{DFA}\) = \(\widehat{FAE}\) + \(\widehat{AEF}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
\(\widehat{FAE}\) = 900 (AE \(\perp\) AC theo gt)
⇒ \(\widehat{DFA}\) = 900 + \(\widehat{AEF}\) > 900
Vậy ED không vuông góc với AC
30.(\(x-\dfrac{7}{12}\)) - 24\(x\) = 100 + 6.(\(x\) - \(\dfrac{3}{4}\))
30\(x\) - \(\dfrac{35}{2}\) - 24\(x\) = 100 + 6\(x\) - \(\dfrac{9}{2}\)
30\(x\) - 24\(x\) - 6\(x\) = 100 - \(\dfrac{9}{2}\) + \(\dfrac{35}{2}\)
6\(x\) - 6\(x\) = 100 - (\(\dfrac{9}{2}\) - \(\dfrac{35}{2}\))
0 = 100 + 13
0 = 113 (vô lý)
Vậy không có giá trị nào của \(x\) thỏa mãn đề bài.
`(x-3)(x+4) > 0`
`=> x - 3` và `x + 4` cùng dấu
Trường hợp 1: `{(x-3>0),(x+4>0):}`
`=> {(x>3),(x>-4):}`
`=> x > 3`
Trường hợp 2: `{(x-3<0),(x+4<0):}`
`=> {(x<3),(x<-4):}`
`=> x < -4`
Vậy ...
a; (\(x-3\))(\(x+4\)) > 0
\(x-3=0\) ⇒ \(x=3\)
\(x+4\) = 0 ⇒ \(x=-4\)
Lập bảng ta có:
\(x\) | - 4 3 |
\(x-3\) | - - 0 + |
\(x+4\) | - 0 + + |
(\(x-3\))(\(x+4\)) | + 0 - 0 + |
Theo bảng trên ta có:
\(x\) \(\in\) (- ∞; -4) \(\cup\)(3 ; + ∞)
\(\dfrac{x}{y}\) = 5,4 và \(\dfrac{x}{y^2}\) = 6 (y ≠ 0)
(\(\dfrac{x}{y}\)) = 5,42 ⇒ \(\left(\dfrac{x}{y}\right)^2\)= 29,16;
Thay \(\dfrac{x}{y^2}\) = 6 vào biểu thức (\(\dfrac{x}{y}\))2 = 29,16 ta được:
\(x.\)6 = 29,16 ⇒ \(x=\) 29,16 : 6 ⇒ \(x\) = 4,86
Thay \(x=4,86\) vào biểu thức \(\dfrac{x}{y}\) = 5,4 ta được
\(4,86\) : y = 5,4 ⇒ y = 4,86 : 5,4 ⇒ y = 0,9
Vậy (\(x;y\)) = (4,86; 0,9)
Tổng số đo 3 góc của ΔABC là 180 độ