K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

Bn đc học sinh sĩ

14 tháng 5 2021

Do môn sử của bạn bị 6,2 nên học kì 2 chỉ là học sinh khá thôi 

Mà nếu HKII là học sinh khá thì cả năm học cũng chỉ là học sinh khá thôi 

Chia buồn với bạn và năm học sau cố gắng hơn !

Cho mik 1 :))

5 tháng 7 2020

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

5 tháng 7 2020

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

5 tháng 7 2020

a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)

\(\Leftrightarrow2x^2+x-x^3-2x^2+x^3-x+3=3\)

\(\Leftrightarrow3=3\)( Luôn đúng với mọi x )

Vậy phương trình nghiệm đúng với mọi x

b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)

\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)

\(\Leftrightarrow-3x^3+6x^2-3x-24=12x+12\)

\(\Leftrightarrow-3x^3+6x^2-3x-24-12x-12=0\)

\(\Leftrightarrow-3x^3+6x^2-15x-36=0\)

Đến đây xem lại đề bạn nhớ :D Tìm thì tìm được nhưng thấy nó sai sai kiểu gì í

c) \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)

\(\Leftrightarrow3x\left(x-2\right)+1\left(x-2\right)=2\left(-3x-5\right)-x\left(-3x-5\right)\)

\(\Leftrightarrow3x^2-6x+x-2=-6x-10+3x^2+5x\)

\(\Leftrightarrow3x^2-6x+x+6x-3x^2-5x=-10+2\)

\(\Leftrightarrow-4x=-8\)

\(\Leftrightarrow x=2\)

d) \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)

\(\Leftrightarrow x\left(x+5\right)+3\left(x+5\right)-x\left(x+7\right)=2x+8\)

\(\Leftrightarrow x^2+5x+3x+15-x^2-7x=2x+8\)

\(\Leftrightarrow x^2+5x+3x-x^2-7x-2x=8-15\)

\(\Leftrightarrow-x=-7\)

\(\Leftrightarrow x=7\)

a, \(x\left(2x-1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)

\(\Leftrightarrow2x^2-x-x^3-2x^2+x^3-x+3=3\)

\(\Leftrightarrow-2x=0\Leftrightarrow x=0\)

b, \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)

\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)

\(\Leftrightarrow-3x-24+6x^2-3x^3=12x+12\)

\(\Leftrightarrow-15x-36+6x^2-3x^3=0\)

Lớp 8 chưa hc vô tỉ đâu ... vô nghiệm 

c, \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)

\(\Leftrightarrow3x^2-5x-2=-x-10+3x^2\)

\(\Leftrightarrow-4x+8=0\Leftrightarrow x=2\)

d, \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)

\(\Leftrightarrow x^2+8x+15-x^2-7x=2x+8\)

\(\Leftrightarrow x+15=2x+8\Leftrightarrow-x+7=0\Leftrightarrow x=7\)

5 tháng 7 2020

a) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x\left(x^2-5x+1\right)-2\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-5x^2+x-2x^2+10x-2-x^3-11x\)

\(=-7x^2-2\)

b) \(\left(x-1\right)\left(x^2+x+1\right)+x^3-2\)

\(=x\left(x^2+x+1\right)-1\left(x^2+x+1\right)+x^3-2\)

\(=x^3+x^2+x-x^2-x-1+x^3-2\)

\(=2x^3-3\)

c) \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)

\(=x\left(x+y\right)-y\left(x+y\right)-2x\left(x-y\right)\)

\(=x^2+xy-yx-y^2-2x^2+2xy\)

\(=-x^2-y^2+2xy\)

a, \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-7x^2+11x-2-x^3-11x=-7x^2-2\)

b, \(\left(x-1\right)\left(x^2+x+1\right)+\left(x^3-2\right)\)

\(=x^3-1+x^3-2=2x^3-3\)

c, \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)

\(=x^2-y^2-2x^2+2xy=-x^2-y^2+2xy\)

5 tháng 7 2020

\(3a^2+2b^2=7ab\)

\(\Leftrightarrow3a^2-7ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(3a-b\right)=0\)

\(\Leftrightarrow a=2b;b=3a\)

Bạn chỉ cần thay vào thì nó tự triệt tiêu biến, còn mỗi const thôi nhé !

4 tháng 7 2020

easy !

Áp dụng bđt cauchy schwarz dạng engel :

\(VT=\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{3^2}{1}=9\)

dấu = xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

Có thưởng thì thưởng số chẵn a nhé :)) ko thích 1001 đâu !

Bài 1 : 

a, \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+d\right)\)

\(=x-2x^2+2x^2-x+d=d\)

Đặt \(f\left(x\right)=0\)hay \(d=0\)

Vậy phươnng trình có nghiệm là d = 0 (đề có j sai ko nhỉ?)

b, \(g\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)

Ta có : \(\left(-1\right)^2-4=1-4< 0\)Vô nghiệm