Ba vòi nước cùng chảy vào bể, mỗi vòi chảy một mình thì sau lần lượt 4
, 5
và 6
giờ sẽ đầy bể.
Hỏi ba vòi cũng chảy thì bao lâu đầy bể?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ABCD là tứ giác có:AB=6cm,CD=18cm,AC=12cm,BD=16cm,AC và BD đi qua E
Suy ra AE/EC=BE/ED=AB/DC=1/3
Suy ra AE/AE + EC = BE/BE + ED = 1/3+1
Suy ra AE/AC=BE/BD=1/4
Suy ra AE=1/4 AC=3 suy ra CE=AC - AE=9
BE=1/4 BD = 4 suy ra DE=BD - DE=12
O A B C D
Ta có AB//CD (2 đáy của hình thang ABCD)
\(\Rightarrow\frac{OA}{OD}=\frac{OB}{OC}=\frac{AB}{CD}\Rightarrow\frac{OA}{OA+AD}=\frac{OB}{OB+BC}=\frac{AB}{CD}\)
Từ \(\frac{OA}{OA+AD}=\frac{AB}{CD}\Rightarrow\frac{OA}{OA+9}=\frac{12}{30}\Rightarrow AO=6cm\)
Từ \(\frac{OB}{OB+BC}=\frac{AB}{CD}\Rightarrow\frac{OB}{OB+15}=\frac{12}{30}\Rightarrow OB=10cm\)
Ta có: \(\hept{\begin{cases}x^3-3xy^2=10\\y^3-3x^2y=30\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x^3-3xy^2\right)^2=100\\\left(y^3-3x^2y\right)^2=900\end{cases}}\)
\(\Rightarrow\left(x^3-3xy^2\right)^2+\left(y^3-3x^2y\right)^2=1000\)
\(\Leftrightarrow x^6-6x^4y^2+9x^2y^4+y^6-6x^2y^4+9x^4y^2=1000\)
\(\Leftrightarrow x^6+3x^4y^2+3x^2y^4+y^6=1000\)
\(\Leftrightarrow\left(x^2+y^2\right)^3=1000\)
\(\Rightarrow x^2+y^2=10\)
Có: \(x^3-3xy^2=10\)
=> \(x^6+9x^2y^4-6x^4y^2=100\left(1\right)\)
Có: \(y^3-3yx^2=30\)
=> \(y^6-6y^4x^2+9x^4y^2=900\left(2\right)\)
Lấy (1) + (2) ta được:
=> \(x^6+y^6+3x^2y^4+3x^4y^2=1000\)
=> \(\left(x^2+y^2\right)^3=1000\)
=> \(x^2+y^2=10\)
=> \(p=10.\)
ta có phương trình tương đương
\(3mx-m-3x=2\Leftrightarrow3\left(m-1\right)x=m+2\)
phương trình có nghiệm duy nhất khi và chỉ khi \(m-1\ne0\Leftrightarrow m\ne1\)
khi đó PT có nghiệm \(x=\frac{m+2}{3\left(m-1\right)}>0\Rightarrow m\in\left(-\infty;-2\right)\cup\left(1;+\infty\right)\)
\(f\left(x,y\right)\)nhận \(x=1\)làm nghiệm
\(\Rightarrow f\left(x,y\right)=\left(3-4y+4\right)\left(1+3y-1\right)=0\)
\(\Leftrightarrow f\left(x,y\right)=3y.\left(-4y+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\-4y+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\\4y=7\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\\y=\frac{7}{4}\end{cases}}\)
Vậy \(y=0\)hoặc \(y=\frac{7}{4}\)
Vì x = 1 là nghiệm của phương trình nên Thay x = 1 vào biểu thức trên ta được
\(\Leftrightarrow\left(3-4y+4\right)\left(1+3y-1\right)=0\)
\(\Leftrightarrow\left(7-4y\right)3y=0\Leftrightarrow y=\frac{7}{4};0\)
Gọi số cần tìm là \(\overline {abcd}\)
Theo bài ra ta có \(\overline {cd}\) \(\vdots \) \(\overline {ab}\) \(\to\) \(\overline {cd}\) \(=\) \(\overline {ab}\) . k (k \(\in\) N)
Có \(\overline {abcd}\) \(=\) \((k+100)\overline {ab}\)
mà \(10 \leq \overline {ab} < 100\) \(\to\) k+100 ko là SNT
\(0 \leq k+100 < 9\)
mà k+100 \(\to\) k \(\neq \) 1,3,7,9
\(\to\) k \(\in \) {2;4;5;6;8}
Rồi xét k là ra nhé
Chúc bạn học tốt ^^
trong một giờ
mỗi vòi lần lượt chảy được \(\frac{1}{4},\frac{1}{5},\frac{1}{6}\) phần thể tích bể
Do đó nếu cả ba vòi cùng chảy thì trong 1 h có thể chảy được \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{15+12+10}{60}=\frac{37}{60}\) phần bể
Do đó cần \(\frac{60}{37}\)h để 3 vòi chảy đầy bể