K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số phần quả bóng còn lại so với tổng số bóng ban đầu là:

\(1-\dfrac{1}{7}-\dfrac{1}{5}=1-\dfrac{12}{35}=\dfrac{23}{35}\)

6 tháng 7 2024

\(\left(x-1\right)+\left(x-2\right)+...+\left(x-20\right)=150\\ x-1+x-2+...+x-20=150\\ \left(x+x+...+x\right)-\left(1+2+...+20\right)\\ 20\cdot x-\left[\left(20-1\right):1+1\right]\cdot\left(20+1\right):2=150\\ 20\cdot x-20\cdot21:2=150\\ 20\cdot x-210=150\\ 20\cdot x=150+210\\ 20\cdot x=360\\ x=360:20\\ x=18\)

6 tháng 7 2024

Đây bạn nhé !

a) 

 cỏ -> sâu -> chim->rắn->đại bàng-> vi khuẩn

cỏ-> châu chấu->chim-> rắn-> đại bàng->vi khuẩn

cỏ-> sâu-> chuột->rắn->đai bàng-> vi khuẩn

cỏ->sâu-> gà->rắn->đại banhg->vi khuẩn

b) 

 cỏ -> sâu -> chim->rắn->đại bàng-> vi khuẩn -> cỏ ->...

Bạn có thể tham khảo 

Nhớ tick cho mình nha

HỌC TỐT

14 tháng 8 2024
Để xây dựng các chuỗi thức ăn và lưới thức ăn từ các sinh vật trong hệ sinh thái gồm cỏ, sâu, chuột, rắn, chim ăn sâu, châu chấu, vi khuẩn, đại bàng và gà, chúng ta có thể theo các bước như sau: ### a) Xây dựng các chuỗi thức ăn 1. **Chuỗi thức ăn từ cỏ đến đại bàng:** - Cỏ → Sâu → Chim ăn sâu → Rắn → Đại bàng 2. **Chuỗi thức ăn từ cỏ đến gà:** - Cỏ → Châu chấu → Gà 3. **Chuỗi thức ăn từ cỏ đến chuột:** - Cỏ → Chuột → Rắn 4. **Chuỗi thức ăn kết thúc với các sinh vật khác:** - Cỏ → Sâu → Rắn - Cỏ → Châu chấu → Chim ăn sâu ### b) Xây dựng lưới thức ăn Lưới thức ăn có thể được biểu diễn như một ma trận kết nối các sinh vật với nhau, cho thấy mối quan hệ giữa các sinh vật trong hệ sinh thái. Trên đây là cách mà các sinh vật này kết nối: - **Cỏ** là nguồn thức ăn cho: - Sâu - Châu chấu - Chuột - **Sâu** là nguồn thức ăn cho: - Chim ăn sâu - Rắn - **Châu chấu** là nguồn thức ăn cho: - Gà - **Chuột** là nguồn thức ăn cho: - Rắn - **Rắn** là nguồn thức ăn cho: - Đại bàng - **Chim ăn sâu** có thể cạnh tranh hoặc là nguồn thức ăn cho đại bàng. ### Biểu diễn lưới thức ăn: Đại bàng ↑ Rắn ← Sâu ↑ ↑ Chuột Chim ăn sâu ↑ ↑ Cỏ → Châu chấu ### Kết luận - Chuỗi thức ăn giúp thể hiện đường đi của năng lượng từ các nhà sản xuất (cỏ) đến các đỉnh trong chuỗi thức ăn. - Lưới thức ăn giúp thể hiện sự phức tạp của các mối quan hệ trong hệ sinh thái, cho thấy sự đa dạng trong nguồn thức ăn và cách mà các sinh vật tương tác với nhau. Hy vọng câu trả lời này giúp ích cho bạn trong việc hiểu về chuỗi thức ăn và lưới thức ăn trong hệ sinh thái này!  
5 tháng 7 2024

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}ab\cdot sinC=\dfrac{1}{2}\cdot7\cdot23\cdot sin130^o=61,7\) (đvdt) 

5 tháng 7 2024

Thank you mngười nhìu ạ

Bài 14:

Số bao đường ở mỗi kho ban đầu là:

168:3=56(bao)

Số bao đường ở mỗi kho sau đó là:

56+16=72(bao)

Số bao đường đã bán hết là:

72x2=144(bao)

a: Ta có: \(\widehat{xOy}=\widehat{mOn}\)(hai góc đối đỉnh)

mà \(\widehat{xOy}=50^0\)

nên \(\widehat{mOn}=50^0\)

Ta có: \(\widehat{xOy}+\widehat{mOy}=180^0\)(hai góc kề bù)

=>\(\widehat{mOy}+50^0=180^0\)

=>\(\widehat{mOy}=130^0\)

Ta có: \(\widehat{xOn}=\widehat{mOy}\)(hai góc đối đỉnh)

mà \(\widehat{mOy}=130^0\)

nên \(\widehat{xOn}=130^0\)

b: Oa là phân giác của góc xOy

=>\(\widehat{yOa}=\dfrac{\widehat{xOy}}{2}=25^0\)

Ta có: Ob là phân giác của góc yOm

=>\(\widehat{yOb}=\dfrac{\widehat{yOm}}{2}=65^0\)

Ta có: \(\widehat{aOb}=\widehat{aOy}+\widehat{bOy}=25^0+65^0=90^0\)

5 tháng 7 2024

Ta có:

+) Vì \(\overline{2abb}⋮\) \(2\) và \(5\)nên:

\(b=0\)

+) Vì \(\overline{2abb}⋮3\) nên:

\(2+a+b+b=2+a+0+0=a+2⋮3\)

\(\Rightarrow\left(a+2\right)\in\left\{3,6,9\right\}\) (vì \(1\le a\le9\))

\(\Rightarrow a\in\left\{1,4,7\right\}\)

Vậy...

 

loading...

loading...

loading...

Bài 14:

1: \(A=x^2-x+3\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>\(x=\dfrac{1}{2}\)

2: \(B=x^2+x+1\)

\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{1}{2}=0\)

=>\(x=-\dfrac{1}{2}\)

3: \(C=x^2-4x+1\)

\(=x^2-4x+4-3\)

\(=\left(x-2\right)^2-3>=-3\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

4: \(D=x^2-5x+7\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{5}{2}=0\)

=>\(x=\dfrac{5}{2}\)

5: \(E=x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

6: \(F=x^2-3x+1\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{5}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)

=>\(x=\dfrac{3}{2}\)

7: \(G=x^2+3x+3\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi x+3/2=0

=>x=-3/2

8: \(H=3x^2+3-5x\)

\(=3\left(x^2-\dfrac{5}{3}x+1\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)

\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>=\dfrac{11}{12}\forall x\)

Dấu '=' xảy ra khi x-5/6=0

=>x=5/6

9: \(I=4x+2x^2+3\)

\(=2\left(x^2+2x+\dfrac{3}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)

\(=2\left(x+1\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

10: \(K=4x^2+3x+2\)

\(=\left(2x\right)^2+2\cdot2x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{23}{16}\)

\(=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}>=\dfrac{23}{16}\forall x\)

Dấu '=' xảy ra khi 2x+3/4=0

=>x=-3/8

11: M=(x-1)(x-3)+11

\(=x^2-4x+3+11=x^2-4x+14\)

\(=x^2-4x+4+10=\left(x-2\right)^2+10>=10\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

12: \(N=\left(x-3\right)^2+\left(x-2\right)^2\)

\(=x^2-6x+9+x^2-4x+4\)

\(=2x^2-10x+13\)

\(=2\left(x^2-5x+\dfrac{13}{2}\right)=2\left(x^2-5x+\dfrac{25}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x-\dfrac{5}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\forall x\)

Dấu '=' xảy ra khi x-5/2=0

=>x=5/2

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

b: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}\)

=>\(\widehat{BDE}=90^0\)

=>DE\(\perp\)BC tại D

XétΔBHF vuông tại H và ΔBHC vuông tại H có

BH chung

\(\widehat{HBF}=\widehat{HBC}\)

Do đó ΔBHF=ΔBHC

c: Xét ΔBFC có

BH,CA là các đường cao

BH cắt CA tại E

Do đó: E là trực tâm của ΔBFC
=>FE\(\perp\)BC

mà DE\(\perp\)BC

và FE,DE có điểm chung là E

nên F,E,D thẳng hàng