tìm một số có ba chữ số,biết rằng nếu viết thêm chữ số 2 vào bên trái ta được số mới gấp 6 lần số phải tìm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
b: Xét ΔCDB vuông tại D và ΔCDK vuông tại D có
CD chung
DB=DK
Do đó: ΔCDB=ΔCDK
=>CB=CK
=>ΔCBK cân tại C
c:
Ta có: ΔADB=ΔAEC
=>AD=AE
Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
nên ED//BC
=>\(\widehat{EDB}=\widehat{DBC}\)
=>\(\widehat{EDB}=\widehat{DKC}\)
\(\Rightarrow100xa+10xb+c+10xa+b+a=111xa+11xb+c\)
\(\Rightarrow111xa+11xb+c=927\)
+ Nếu \(a=9\)
\(\Rightarrow111xa+11xb++a=111x9+11xb+c=\)
\(=999+11xb+c>927\) => a=9 loại
+Nếu \(a=7\)
\(\Rightarrow111xa+11xb+c=111x7+11xb+c=\)
\(=777+11xb+c\)
Ta có \(b\le9;c\le9\Rightarrow11xb+c\le99+9=108\)
\(\Rightarrow777+11xb+c\le777+108=885< 927\) => a=7 loại
=> a=8
\(\Rightarrow111xa+11xb+c=111x8+11xb+c=927\)
\(\Rightarrow11xb+c=39\)
\(\Rightarrow11xb< 39\Rightarrow b\le3\)
Ta có
\(11xb=39-c\) do \(c\le9\Rightarrow11xb\ge39-9=30\Rightarrow b\ge3\)
=> b=3
\(\Rightarrow111xa+11xb+c=927\)
\(\Rightarrow111x8+11x3+c=927\Rightarrow c=6\)
Thử
\(836+83+8=927\)
\(\Rightarrow a=8;b=3;c=6\)
a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
Ta có: \(\widehat{BIH}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)
\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)
mà \(\widehat{HBI}=\widehat{ABD}\)
nên \(\widehat{BIH}=\widehat{ADI}\)
=>\(\widehat{ADI}=\widehat{AID}\)
=>ΔAID cân tại A
c: Ta có: \(\widehat{CAE}+\widehat{BAE}=\widehat{BAC}=90^0\)
\(\widehat{HAE}+\widehat{BEA}=90^0\)
mà \(\widehat{BAE}=\widehat{BEA}\)(ΔBAE cân tại B)
nên \(\widehat{CAE}=\widehat{HAE}\)
=>AE là phân giác của góc HAC
\(4x^3-x^2-ax+b⋮x^2+1\)
=>\(4x^3+4x-x^2-1+\left(-a-4\right)x+b+1⋮x^2+1\)
=>-a-4=0 và b+1=0
=>a=-4 và b=-1
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-30^0=60^0\)
Xét ΔBAD có BA=BD và \(\widehat{ABD}=60^0\)
nên ΔBAD đều
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
=>\(\widehat{ABE}=\widehat{DBE}\)
=>BE là phân giác của góc ABC
c: Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}\)
=>\(\widehat{DAC}+60^0=90^0\)
=>\(\widehat{DAC}=30^0\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC đều
=>DA=DC
=>DC=DB
=>D là trung điểm của BC
=>\(AD=\dfrac{1}{2}BC\)
d: Xét ΔBMC có
BN,CA là các đường cao
BN cắt CA tại E
Do đó: E là trực tâm của ΔBMC
=>ME\(\perp\)BC
mà ED\(\perp\)BC
nên M,E,D thẳng hàng
=>BA,CN,DE đồng quy
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔAMB=ΔAMC
b: ΔAMB=ΔAMC
=>\(\widehat{MAB}=\widehat{MAC}\)
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó: ΔAEM=ΔAFM
=>AE=AF và ME=MF
ta có: AE=AF
=>A nằm trên đường trung trực của EF(1)
Ta có: ME=MF
=>M nằm trên đường trung trực của EF(2)
Từ (1),(2) suy ra AM là đường trung trực của EF
số cách chọn là
12C4 - 5C1.4C1.3C2 - 5C1.4C2.3C1- 5C2.4C1.3C1
Khi ghi chữ số 2 vào bên trái số có ba chữ số thì số ban đầu tăng thêm 2000 đơn vị
Khi đó số mới lớn hơn số ban đầu 2000 đơn vị
Hiệu số phần bằng nhau:
6 - 1 = 5 (phần)
Số cần tìm là:
2000 : 5 = 400