Cho tam giác đều ABC. Điểm M trên cạnh BC ( M không trùng với B,C ); Gọi D và E lần lượt là hình chiếu của M trên AB và AC. Xác định vị trí của M để diện tích tam giác MDE lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


viết câuTương đương mà nghĩa không thay đổi
mary usually gets 8 for her math tests. Dave usually gets 10 for his maths tests

Qua O kẻ đường thẳng vuông góc với OC cắt AC; BC lần lượt tại M và N
Xét \(\Delta\)CMN có: CO là phân giác đồng thời là đường cao
=> \(\Delta\)CMN cân
=> ^CMN = ^CNM => ^CMO = ^CNO => ^AMO = ^BNO
=> ^MAO + ^AOM = ^NBO + ^BON ( 1)
Xét trong \(\Delta\)BOA ta có: ^ABO + ^BAO = ^AOM + ^BON ( = 180 \(^o\)- ^AOB )
=> ^NBO + ^MAO = ^AOM+ ^BON ( AO ; BO là phân giác ^A; ^B ) (2)
Từ (1)- (2) => ^AOM - ^NBO = ^NBO - ^AOM
=> ^AOM = ^NBO (3)
Từ (3) dễ dàng chứng minh đươc \(\Delta\)AOM ~ \(\Delta\)OBN ~ \(\Delta\)ABO ( g-g ) ( tự chứng minh )
Có: \(\Delta\)AOM ~ \(\Delta\)OBN => \(\frac{AM}{ON}=\frac{OM}{BN}\)=> AM.BN = OM. ON (4)
Có: \(\Delta\)OBN ~ \(\Delta\)ABO => \(\frac{OB}{BN}=\frac{AB}{OB}\)=> OB.OB = AB.BN => \(\frac{OB^2}{AB.BC}=\frac{BN}{BC}\)(5)
Có: \(\Delta\)AOM ~ \(\Delta\)ABO => \(\frac{OA}{AM}=\frac{AB}{OA}\)=> OA.OA =AM.AB => \(\frac{OA^2}{AB.AC}=\frac{AM}{AC}\)(6)
Xét \(\Delta\)cân CMN có: OM = ON ; CM = CN
Xét \(\Delta\)CON vuông tại O => CN\(^2\)= ON\(^2\)+ OC\(^2\)
=> OC \(^2\)= CN\(^2\)- ON\(^2\)= CN.CM - ON.OM = ( BC - BN ) ( AC - AM ) - ON.OM
= BC.AC - BN. AC - BC.AM + BN. AM - ON . OM = BC. AC - BN.AC - BC.AM ( theo 4 => BN. AM - ON . OM = 0)
=> \(\frac{OC^2}{CA.CB}=1-\frac{BN}{BC}-\frac{AM}{AC}\)(7)
Từ (5); (6) (7) => \(\frac{OC^2}{AC.BC}=1-\frac{OA^2}{AB.AC}-\frac{OB^2}{BA.BC}\)
Chuyển vế => Điều phải chứng minh

Phương trình (2) <=> x +3xy = 3xy + y + 5
<=> x = y + 5 <=> x - y = 5
phương trình (1) <=> (x - y ) \(^2\)=1
Khi đó ta có: 5\(^2\)=1 vô lí
Em kiểm tra lại đề bài nhé!

\(3^x+171=y^2\)
+) Với x = 0 ta có: \(1+171=y^2\)( loại )
+) Với x = 1, ta có: \(3+171=y^2\)( loại )
+) Với x > 1.
pt <=> \(9\left(3^{x-2}+19\right)=y^2\)
=> \(3^{x-2}+19=z^2\)với \(y=3z\)( z là số tự nhiên )
+) TH1: \(x-2=2k+1\)( k là số tự nhiên )
Ta có: \(3^{2k+1}+19=z^2\)
có: \(3^{2k+1}+19⋮2\)
nhưng \(3^{2k+1}+19=3^{2k}.3+1+16+2\): 4 dư 2
=> \(3^{2k+1}+19\) không phải là số chính phương
Vậy loại trường hợp này
+) TH2: \(x-2=2k\)( k là số tự nhiên )
Ta có: \(3^{2k}+19=z^2\)
<=> \(\left(z-3^k\right)\left(z+3^k\right)=19\) (1)
z, 3^k là số tự nhiên nên ( 1) <=> \(\hept{\begin{cases}z+3^k=19\\z-3^k=1\end{cases}\Leftrightarrow}\hept{\begin{cases}z=10\\k=2\end{cases}}\)=> x = 6; y = 30. Thử lại thấy thỏa mãn
Vậy....

Đặt: \(A=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}>0\)
<=> \(A.\sqrt{4+\sqrt{13}}=\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}\)
<=> \(A^2\left(4+\sqrt{13}\right)=4+\sqrt{3}+4-\sqrt{3}+2\sqrt{13}\)
<=> \(A^2\left(4+\sqrt{13}\right)=2\left(4+\sqrt{13}\right)\)
<=> \(A=\sqrt{2}\)
Vậy: \(\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)
\(=\sqrt{2}+\sqrt{25-2.5.\sqrt{2}+2}\)
\(=\sqrt{2}+\left(5-\sqrt{2}\right)=5\)

Heron \(4\sqrt{3}S=\sqrt{3\left(a^2+b^2+c^2\right)^2-6\left(a^4+b^4+c^4\right)}\)
Cần CM: \(a^2+b^2+c^2\ge\sqrt{3\left(a^2+b^2+c^2\right)^2-6\left(a^4+b^4+c^4\right)}\)
\(\Leftrightarrow\)\(3\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\) đúng (Cauchy-Schwarz)
Dấu "=" xảy ra khi ABC đều