Giải bài toán bằng cách phuơng trình hoc hệ phương trình:
Tìm một số tự nhiên có hai chữ số. Biết chữ số hàng chục lớn hơn chữ số hàng đơn vị là 3 và tổng các bình phương của hai chữ số là 45 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có : \(x=81\Rightarrow\sqrt{x}=9\)
Thay \(\sqrt{x}=9\)vào biểu thức A ta được :
\(A=\frac{2}{9+1}=\frac{2}{10}=\frac{1}{5}\)
b, Ta có : \(P=\frac{B}{A}\)hay\(P=\frac{\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}}{\frac{2}{\sqrt{x}+1}}\)
\(=\frac{1+\sqrt{x}}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)
c, Ta có \(\frac{1}{2}=\frac{\sqrt{x}}{2\sqrt{x}}\)mà \(\sqrt{x}< \sqrt{x}+1\)
nên \(P>\frac{1}{2}\)
a) \(A=\frac{2}{\sqrt{x}+1}=\frac{2}{\sqrt{81}+1}=\frac{2}{9+1}=\frac{1}{5}\)
b) \(B=\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}\)
\(=\frac{1+\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}=\frac{1}{\sqrt{x}}\)
\(\Rightarrow P=\frac{B}{A}=\frac{1}{\sqrt{x}}\div\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)
c) Ta có: \(P=\frac{\sqrt{x}+1}{2\sqrt{x}}=\frac{1}{2}+\frac{1}{\sqrt{x}}+\frac{1}{2}+0=\frac{1}{2}\)
=> P>1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm :
a) Ta có :
\(\widehat{ACB}\text{ là góc nội tếp chắn nửa đường tròn}\)
\(\Rightarrow\widehat{ACB}=90^o\Rightarrow\widehat{ACM}=180^o-\widehat{ACB}=90^o\)
Từ đó ; ta có :
\(\widehat{ACM}+\widehat{AHM}=90+90=180^o\)
=> Tứ giác AHMC là tứ giác nội tiếp đường tròn vì có 2 góc đối diện = 180 độ
=> Điều phải chứng minh
b) Theo phần a : Tứ giác AHMC là tứ giác nội tiếp
\(\Rightarrow\widehat{AMH}=\widehat{ACH}\left(1\right)\)
Xét đường tròn (O) : Góc ADC và góc ABC đều là 2 góc nội tiếp cùng chắn cung AC
\(\Rightarrow\widehat{ADC}=\widehat{ABC}\left(2\right)\)
Vì CD⊥AB ; MH⊥AB
=> CD//MH
=>∠ADC = ∠AMH ( 2góc so le trong ) (3)
Từ (1) ; (2) ; (3)
\(\Rightarrow\widehat{ABC}=\widehat{ACH}\)
=> Điều phải chứng minh
c)∠AOC = 45o
=>∠COB = 180 - 45 = 135o
\(\Rightarrow S_{OCB}=\frac{\pi.R^2.n}{360}=\frac{\pi.2^2.135}{360}=\frac{3}{2}\pi\left(cm^2\right)\)
a) Xét tứ giác AHMC có
góc ACM + góc AHM = 180 độ
Vậy tứ giác AHMC nội tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm :
Gọi chiều dài một cạnh cần tính là a (m) ; chiều cao tương ứng là h (m) . Điều kiện : a,h > 0
Thửa ruộng có S=2180 m2
\(\Rightarrow\frac{a.h}{2}=2180\Rightarrow a.h=4360\Rightarrow a=\frac{4360}{h}\left(1\right)\)
Tăng cạnh 4m ; giảm chiều cao tương ứng 1m thì S không đổi
\(\Rightarrow\left(a+4\right)\left(h-1\right)=4360\left(2\right)\)
Thay (1) vào (2) ; ta được :
\(\left(\frac{4360}{h}+4\right)\left(h-1\right)=4360\)
\(\Leftrightarrow\frac{\left(4360+4h\right)\left(h-1\right)}{h}=\frac{4360h}{h}\)
\(\Leftrightarrow4h^2+4356h-4360-4360h=0\)
\(\Leftrightarrow4h^2-4h-4360=0\)
\(\Delta'=2^2-4.\left(-4360\right)=17444>0\)
\(\Rightarrow\hept{\begin{cases}h_1=\frac{2+\sqrt{17444}}{4}=\frac{1+7\sqrt{89}}{2}\left(TM\right)\\h_2=\frac{2-\sqrt{17444}}{4}=\frac{1-7\sqrt{89}}{2}\left(KTM\right)\end{cases}}\)
Vậy chiều dài một cạnh cần tính là :
\(\frac{4360}{h}=\frac{4360}{\frac{1+7\sqrt{89}}{2}}=-2+14\sqrt{89}\left(m\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(x^2-\left(m+2\right)x+m=0\)
(a=1;b=-(m+2);c=m)
Ta có:\(\Delta=\left[-\left(m+2\right)\right]^2-4.1.m\)
\(=\left(m+2\right)^2-4m\)
\(=m^2+2m.2+2^2-4m\)
\(=m^2+4m+4-4m\)
\(=m^2+4\)
Vì\(m^2\ge0\forall m\Rightarrow m^2+4m\ge0\left(1\right)\)
Vậy pt luôn có nghiện với mọi m
b,Xét hệ thức vi-ét,ta có:
\(\hept{\begin{cases}x_1+x_2=m+2\\x_1.x_2=m\end{cases}}\)
Theo đề bài ,ta có:
\(x_1+x_2-3x_1x_2=2\)
\(\Leftrightarrow m+2-3m=2\)
\(\Leftrightarrow-2m+2=2\)
\(\Leftrightarrow-2m=2-2\)
\(\Leftrightarrow m=0\)[t/m(1)]
Vậy với m=0 thì pt thảo mãn điều kiện đề bài cho
a, Ta có : \(\Delta=\left(m+2\right)^2-4m=m^2+4m+4-4m=m^2+4>0\forall m\)
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m+2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
Lại có : \(x_1+x_2-3x_1x_2=2\Rightarrow m+2-3m=2\)
\(\Leftrightarrow-2m=0\Leftrightarrow m=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
- Thể tích của bồn chứa nước đó là 0,735 (m3)
- Diện tích xung quanh là : 15π (cm2)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=x^2+xy+y^2-3\left(x+y\right)+3\)
\(2P=2x^2+2xy+2y^2-6x-6y+6\)
\(2P=x^2-2x+1+y^2-2y+1+x^2+y^2+4-4x-4y+2xy\)
\(2P=\left(x-1\right)^2+\left(y-1\right)^2+\left(x+y-2\right)^2\ge0\)
Dấu \(=\)xảy ra khi \(x=y=1\).
Áp dụng bất đẳng thức,cho 2 số không ân,ta có:
\(x^2+y^2\ge2\)
\(\sqrt{x^2}.\sqrt{y^2}=2.xy=2.6=12\)
Vậy P min=12,dấu "=" xảy ra khi:
\(x^2=y^2\Leftrightarrow x=y\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :
Số khẩu trang khối 8, 9 dự định quyên góp theo kh lần lượt là x , y ( chiếc ) ( x , y \(\in\)N* ; x , y < 1140 )
Theo đề bài ta có PT : x + y = 1140 (1)
Thực tế, khối 8 quyên góp đc : x + 10%x = 1,1 x ( chiếc)
Thực tế, khối 9 quyên góp đc : y + 20%y = 1,2 y ( chiếc )
Theo đề bài ta có PT : 1,1 x + 1,2 y = 1314 (2)
Từ (1) và (2) ta có hệ PT :
\(\hept{\begin{cases}x+y=1140\\1,1x+1,2y=1314\end{cases}}\)
Giải tiếp hệ là ra nhé
Gọi chữ số hàng chục là của số cần tìm là \(x\)(điều kiện: \(3< x\le9;x\inℕ\)).
Chữ số hàng đơn vị của số cần tìm là \(x-3\).
Vì tổng các bình phương của 2 chữ số là \(45\) nên ta có phương trình:
\(x^2+\left(x-3\right)^2=45\).
\(\Leftrightarrow x^2+x^2-6x+9-45=0\).
\(\Leftrightarrow2x^2-6x-36=0\).
\(\Leftrightarrow2\left(x^2-3x-18\right)=0\).
\(\Leftrightarrow x^2-3x-18=0\).
\(\Leftrightarrow\left(x-6\right)\left(x+3\right)=0\).
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)(tm: Thỏa mãn; ktm: Không thỏa mãn).
\(\Leftrightarrow x=6\).
Do đó chữ số hàng đơn vị của chữ số cần tìm là \(6-3=3\).
Vậy số cần tìm là \(63\)
Bài làm :
Gọi x ; y lần lượt là chữ số hàng chục và chữ số hàng đơn vị .
Điều kiện : \(x,y\inℕ;x>3\)
Theo đề bài ; ta có hệ phương trình ;
\(\hept{\begin{cases}x=y+3\\x^2+y^2=45\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+3\\\left(y+3\right)^2+y^2=45\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+3\\y^2+6y+9+y^2-45=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+3\\2y^2+6y-36=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+3\\y^2+3y-18=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Vậy số cần tìm là 63