Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=3 tìm GTLN của
\(\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(b+c\right)\left(a+c\right)}+\sqrt{\left(a+b\right)\left(a+c\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks
\(2\sqrt{x}-x-3=-x+2\sqrt{x}-1-2=-\left(\sqrt{x}-1\right)^2-2\)
Ta có: \(\left(\sqrt{x}-1\right)^2\ge0\Rightarrow-\left(\sqrt{x}-1\right)^2\le0\Rightarrow-\left(\sqrt{x}-1\right)^2-2\le-2\)
=> \(A=\frac{1}{2\sqrt{x}-x-3}\ge-\frac{1}{2}\)
Dấu"=" xảy ra <=> \(\sqrt{x}-1=0\)<=> x = 1
Vậy max A = -1/2 đạt tại x = 1.
Hướng dẫn:
Gọi F là giao điểm của d và AB
\(\Delta\)BFE ~ \(\Delta\)DBA ( g - g - g)
=> \(\frac{BF}{DB}=\frac{BE}{DA}\)=> BF . DA = DB . BE (1)
Ta có : BD // CF => \(\frac{AB}{BF}=\frac{AD}{DC}\)=> AB . DC = AD . BF (2)
Từ (1) ; (2) => DB . BE = AB . DC => \(\frac{BD}{AB}=\frac{DC}{BE}\)(3)
Có: CF // BD và BE vuông CF => BE vuông DB => ^DBE = 90\(^o\)
=> ^EBF + ^DBA = 90\(^o\)
mà ^DBA + ^ADB = 90\(^o\)
=> ^EBF = ^ADB
=> ^CDB = ^EBA ( 4 )
3, 4 => \(\Delta\)BAE ~ \(\Delta\)DBC ( c.g.c)
\(A=\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)
\(A=\sqrt{2-2\sqrt{2}.1+1}-\sqrt{4+2.2\sqrt{2}+2}\)
\(A=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(A=\left|\sqrt{2-1}\right|-\left|2+\sqrt{2}\right|\)
\(A=\sqrt{2}-1-2-\sqrt{2}\)|
\(A=-3\)
\(A=\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{2}-1-\left(2+\sqrt{2}\right)\)
\(=\sqrt{2}-1-2-\sqrt{2}\)
\(=-1-2\)
\(=-3\)
A B C D E H M
Kẻ HM vuông góc BC ( M thuộc BC )
\(\Delta BHM~\Delta BCD\left(g.g\right)\) \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BD}\Rightarrow BH.BD=BC.BM\) ( 1 )
\(\Delta CHM~\Delta CBE\left(g.g\right)\Rightarrow\frac{CH}{BC}=\frac{CM}{CE}\Rightarrow CH.CE=BC.CM\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow BH.BD+CH.CE=BC\left(BM+CM\right)=BC^2\)
Cô-si : \(\sqrt{\left(a+b\right)\left(b+c\right)}\le\frac{a+b+b+c}{2}=\frac{a+2b+c}{2}\)
Ta sẽ chứng minh \(VT\le6=\Sigma_{cyc}\frac{a+2b+c}{2}\) . Ta có:
\(VP-VT=\Sigma_{cyc}\frac{\left(a-b\right)^2}{2\left(\sqrt{c+a}+\sqrt{b+c}\right)^2}\ge0\)
Từ đó..