Bài 4 Tính
a)\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2020}-1\right)\left(\frac{1}{2021}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{1}{13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(=\frac{3}{3.13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(=\frac{3}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+..+\frac{10}{1993.2003}\right)\)
\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\)
\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{2003}\right)=\frac{3}{10}.\frac{2000}{6009}=\frac{200}{2003}\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{3}{13.23}\)\(+\)\(\frac{3}{23.33}\)\(+...+\)\(\frac{3}{1993.2003}\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left(\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\right)\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13.23}+\frac{1}{23.33}+...+\frac{1}{1993.2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}.\frac{1990}{26039}\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{597}{26039}\)
\(N=\)\(\frac{200}{2003}\)
Trả lời:
Làm tròn các số sau đến hàng chục, trăm, nghìn, chục nghìn:
a) 763189\(\approx\)763190
b) 198575\(\approx\)198600
c) 2398761\(\approx\)2399000
d) 1895678\(\approx\)1900000
HT
ối dồi ôi bạn ơi, toán lớp 1 chứ không phải lớp 7, tôi xốk quá
4)
Ta có x/3=y/2 và x/4=z/5
=>x/12=y/8=z/15
Theo tình chất các tỉ số bằng nhau ta có
X/12=y/8=z/15=x+y-z/12+8-15=10/5=2
=>x=2.12=24
y=8.2=16
z=15.2=30
Kết luận:.......
a. ta có :
\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm
b.ta có
\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm
Ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
=> \(1+\frac{a+b+c+d}{a}=1+\frac{a+b+c+d}{b}=1+\frac{a+b+c+d}{c}=1+\frac{a+b+c+d}{d}\)
=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Khi a + b + c + d => a + b = -(c + d) ;
b + c = -(a + d) ;
c + d = -(a + b)
d + a = -(b + c)
Khi đó \(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
= (-1) + (-1) + (-1) + (-1) = -4
Khi a + b + c + d \(\ne0\)
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = \(\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=2+2+2+2=8\)
Vậy khi a + b + c + d = 0 thì M = -4
khi a + b + c + d \(\ne\)0 thì M = 8
TH1: \(x\le-1\)
ta có phương trình \(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow-x-1-2x+5-x+9=10\)
\(\Leftrightarrow-4x=-3\Leftrightarrow x=\frac{3}{4}\left(\text{loại}\right)\)
TH2: \(-1< x\le\frac{5}{2}\) thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1-2x+5-x+9=10\)
\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(tm\right)\)
Th3: \(\frac{5}{2}< x\le9\) thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5-x+9=10\)
\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(\text{loại}\right)\)
th4:\(x>9\)thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5+x-9=10\)
\(\Leftrightarrow4x=23\Leftrightarrow x=\frac{23}{4}\left(\text{loại}\right)\)
Vậy x=5/2
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2021}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right)....\left(-\frac{2020}{2021}\right)\)
\(=\frac{1.2.3...2020}{2.3.4...2021}=\frac{1}{2021}\)
Ta có
(1−1/2)×(1−1/3)×(1−1/4).....×(1−1/2020)×(1−1/2021)(1-1/2)×(1-1/3)×(1-1/4).....×(1-1/2020)×(1-1/2021)
=1/2×2/3×3/4.....×2019/2020×2020/2021=1/2×2/3×3/4.....×2019/2020×2020/2021
=1×2×3×.....×2019×2020/2×3×4×....×2020×2021=1×2×3×.....×2019×2020/2×3×4×....×2020×2021
=1/2021