Tìm x, biết :
/x/ + /x-1/ = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
(27x + 3 5).6 4 = 6.6 8
27x + 3 5 = 6.6 8 : 6 4
27x + 3 5 = 6.6 4
27x + 3 5 = 7776
27x = 7776 - 3 5
27x = 7776 - 243
27x = 7533
x = 7533 : 27
x = 279
Vậy x = 279
Trả lời :
\(\left(27.x+3^5\right).6^4=6.6^8\)
\(27x+3^5=6.6^8\div6^4\)
\(27x+3^5=6.6^4\)
\(27x+3^5=7776\)
\(27x=7776-3^5\)
\(27x=7776-234\)
\(27x=7533\)
\(\Rightarrow x=279\)
~HT~
a) Xét 2 tam giác vuông EDB và EIB có
EB chung
Góc EDB = Góc EIB = 90độ
Góc DEB = Góc IEB (vì EB là phân giác của Góc E)
=> tam giác EDB = tam giác EIB (ch-gn)
b) Nối H với F
Ta có EI = ED (vì tam giác EDB = tam giác EIB) => EF - EI = EH - ED
=> DH = IF
Xét 2 tam giác vuông FHD và HFI có:
HF chung
DH = IF (cmt)
=> tam giác FHD = tam giác HFI (ch-cgv)
GT, KL, hình vẽ (tự làm)
a) Ta có: Góc DEB = góc FEB ( EB là tia phân giác)
Hay góc DEB = góc IEB
Xét ΔEDBΔEDB vuông tại D và ΔEIBΔEIB vuông tại I có:
EB chung
góc DEB = góc IEb (cmt)
⇒ΔEDB=ΔEIB⇒ΔEDB=ΔEIB (cạnh huyền- góc nhọn)
⇒DB=IB⇒DB=IB ( 2 cạnh t/ứ)
b) Xét ΔDBHΔDBH vuông tại D và ΔIBFΔIBF vuông tại I có:
DB = IB (cmt)
góc DBH = góc IBF (2 góc đối đỉnh)
⇒ΔDBH=ΔIBF(c.h−g.n)⇒ΔDBH=ΔIBF(c.h−g.n)
⇒BH=BF⇒BH=BF( 2 cạnh tương ứng)
c) Tự làm
d)c) t/g BDH = t/g BIF (câu b)
=> DH = IF (2 cạnh tương ứng)
Mà ED = EI (do t/g EDB = t/g EIB
=> DH + ED = IF + EI
=> EH = EF
t/g EHK = t/g EFK (c.c.c)
=> HEK = FEK (2 góc tương ứng)
=> EK là phân giác HEF (1)
Có: DEB = IEB (do t/g EDB = t/g EIB
=> EB là phân giác DEI (2)
Từ (1) và (2) => E,B,K thẳng hàng (đpcm)