mình cần gấp ạ, tối nay mình cần nôpj r ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Vì hai bạn cùng thời điểm xuất phát, cùng đến nhà hát vào cùng một lúc nên thời gian đi của hai bạn bằng nhau.
Gọi vận tốc của bạn Lan là \(x\) (km/h); \(x\) > 0
Thời gian bạn Lan đi đến nhà hát bằng thời gian bạn Điệp đi đến nhà hát và bằng:
6 : \(x\) = \(\dfrac{6}{x}\) (giờ)
Vận tốc của bạn Điệp khi đi đến nhà hát là:
7 : \(\dfrac{6}{x}\) = \(\dfrac{7}{6}\)\(x\) (km/h)
Theo bài ra ta có phương trình:
\(\dfrac{7}{6}x\) - \(x\) = 2
\(x\times\)(\(\dfrac{7}{6}\) - 1) = 2
\(x\) \(\times\) \(\dfrac{1}{6}\) = 2
\(x\) = 2 : \(\dfrac{1}{6}\)
\(x\) = 12
Vậy vận tốc của Lan là 12 km/h
Vận tốc của Điệp là: 12 + 2 = 14 (km/h)
Kết luận: Vận tốc của Lan 12km/h
Vận tốc của Điệp là: 14 km/h
a: \(\dfrac{1}{4003}>0;0>-\dfrac{75}{106}\)
Do đó: \(\dfrac{1}{4003}>-\dfrac{75}{106}\)
b: \(-19< -17\)
=>\(-\dfrac{19}{31}< -\dfrac{17}{31}\)
c: \(\dfrac{-33}{37}>\dfrac{-34}{37}\)
mà \(-\dfrac{34}{37}>-\dfrac{34}{35}\)
nên \(\dfrac{-33}{37}>-\dfrac{34}{35}\)
d: \(\dfrac{-13}{77}=\dfrac{-13\cdot205}{77\cdot205}=\dfrac{-2665}{77\cdot205}\)
\(\dfrac{-34}{205}=\dfrac{-34\cdot77}{205\cdot77}=\dfrac{-2618}{205\cdot77}\)
mà -2665<-2618
nên \(\dfrac{-13}{77}< \dfrac{-34}{205}\)
e: \(\dfrac{-456}{461}=-1+\dfrac{5}{461};\dfrac{-123}{128}=-1+\dfrac{5}{128}\)
461>128
=>\(\dfrac{5}{461}< \dfrac{5}{128}\)
=>\(\dfrac{5}{461}-1< \dfrac{5}{128}-1\)
=>\(\dfrac{-456}{461}< \dfrac{-123}{128}\)
\(\left(\dfrac{-4}{9}\right)^2=\dfrac{16}{81}\Rightarrow x=2\)
\(\left(-\dfrac{1}{3}\right)^3=\dfrac{-1}{27}\Rightarrow x=1\)
\(\left(-\dfrac{1}{3}\right)^4=\dfrac{1}{81}\Rightarrow x=1\)
\(\left(-\dfrac{4}{9}\right)^x=\dfrac{16}{81}\\ \left(-\dfrac{4}{9}\right)^x=\left(\dfrac{4}{9}\right)^2\\ \left(-\dfrac{4}{9}\right)^x=\left(-\dfrac{4}{9}\right)^2\\ x=2\\ -----------\\ \left(-\dfrac{1}{3}\right)^{2x+1}=-\dfrac{1}{27}\\ \left(-\dfrac{1}{3}\right)^{2x+1}=\left(-\dfrac{1}{3}\right)^3\\ 2x+1=3\\ 2x=3-1=2\\ x=\dfrac{2}{2}=1\\ -----------\\ \left(-\dfrac{1}{3}\right)^{3x+1}=\dfrac{1}{81}\\\left(-\dfrac{1}{3}\right)^{3x+1}=\left(\dfrac{1}{3}\right)^4\\ \left(-\dfrac{1}{3}\right)^{3x+1}=\left(-\dfrac{1}{3}\right)^4\\ 3x+1=4\\ 3x=4-1=3\\ x=\dfrac{3}{3}=1\)
\(\left(\dfrac{7}{5}\right)^x=\dfrac{49}{25}\Leftrightarrow\left(\dfrac{7}{5}\right)^x=\left(\dfrac{7}{5}\right)^2\Leftrightarrow x=2\)
\(\left(x-\dfrac{3}{2}\right)^2=\dfrac{9}{16}=\left(\dfrac{3}{4}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{3}{4}\\x-\dfrac{3}{2}=-\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
\(\left(x-\dfrac{3}{2}\right)^2=\dfrac{9}{16}\\ \left(x-\dfrac{3}{2}\right)^2=\left(\dfrac{3}{4}\right)^2\)
TH1: \(x-\dfrac{3}{2}=\dfrac{3}{4}\Rightarrow x=\dfrac{3}{4}+\dfrac{3}{2}\Rightarrow x=\dfrac{3}{4}+\dfrac{6}{4}\Rightarrow x=\dfrac{9}{4}\)
TH2: \(x-\dfrac{3}{2}=-\dfrac{3}{4}\Rightarrow x=-\dfrac{3}{4}+\dfrac{3}{2}\Rightarrow x=-\dfrac{3}{4}+\dfrac{6}{4}\Rightarrow x=\dfrac{3}{4}\)
a: Xét ΔMHN và ΔMHP có
MH chung
MN=MP
MN=MP
Do đó: ΔMHN=ΔMHP
b: ΔMHN=ΔMHP
=>\(\widehat{HMN}=\widehat{HMP}\)
Xét ΔMAH vuông tại A và ΔMBH vuông tại B có
MH chung
\(\widehat{AMH}=\widehat{BMH}\)
Do đó: ΔMAH=ΔMBH
=>HA=HB
c: Ta có: ΔMHA=ΔMHB
=>MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: HA=HB
=>H nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra MH là đường trung trực của AB
=>MH\(\perp\)AB
d: Xét ΔMEF có
EB,FA là các đường cao
EB cắt FA tại H
Do đó: H là trực tâm của ΔMEF
=>MH\(\perp\)EF tại C
Xét tứ giác EAHC có \(\widehat{EAH}+\widehat{ECH}=90^0+90^0=180^0\)
nên EAHC là tứ giác nội tiếp
Xét tứ giác FCHB có \(\widehat{FCH}+\widehat{FBH}=90^0+90^0=180^0\)
nên FCHB là tứ giác nội tiếp
Xét tứ giác MAHB có \(\widehat{MAH}+\widehat{MBH}=90^0+90^0=180^0\)
nên MAHB là tứ giác nội tiếp
Ta có: \(\widehat{CAH}=\widehat{CEH}\)(EAHC nội tiếp)
\(\widehat{BAH}=\widehat{BMH}\)(MAHB nội tiếp)
mà \(\widehat{CEH}=\widehat{BMH}\left(=90^0-\widehat{MFE}\right)\)
nên \(\widehat{CAH}=\widehat{BAH}\)
=>AH là phân giác của góc BAC
Ta có: \(\widehat{ABH}=\widehat{AMH}\)(MAHB nội tiếp)
\(\widehat{CBH}=\widehat{CFH}\)(CFBH nội tiếp)
mà \(\widehat{AMH}=\widehat{CFH}\left(=90^0-\widehat{MEF}\right)\)
nên \(\widehat{ABH}=\widehat{CBH}\)
=>BH là phân giác của góc ABC
Xét ΔABC có
AH,BH là các đường phân giác
AH cắt BH tại H
Do đó: H là tâm đường tròn nội tiếp ΔABC
=>H cách đều ba cạnh của ΔABC
a) Ta có: \(\widehat{cNb}+\widehat{MNb}=180^{\circ}\) (hai góc kề bù)
\(\Rightarrow\widehat{MNb}=180^{\circ}-\widehat{cNb}=180^{\circ}-55^{\circ}=125^{\circ}\)
b) Ta có: \(\widehat{MNb}=\widehat{aMN}\left(=125^{\circ}\right)\)
Mà hai góc này đều nằm ở vị trí so le trong
Nên \(Ma//Nb\)