1) Vẽ đồ thị của hàm số $y=-2 x^{2}$.
2) Cho phương trình $x^{2}+(1-m) x-m=0$ (với $x$ là ẩn số, $m$ là tham số). Xác định các giá trị của $m$ để phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$ thỏa mãn điều kiện $x_{1}\left(5-x_{2}\right) \geq 5\left(3-x_{2}\right)-36$.
Bài 1 : Ta có : x 0 0
y 0 0
0 x y
bài 1 là mình đặt x = 0 rồi y = 0 nhé, đặt số nào cũng được nha nhưng mình chọn số 0 vì nó dễ :v nên mn đừng thắc mắc nhá
Bài 2 :
Để pt có 2 nghiệm pb nên \(\Delta>0\)hay
\(\left(1-m\right)^2-4\left(-m\right)=m^2-2m+1+4m=\left(m+1\right)^2>0\)
\(\Leftrightarrow m>-1\)
Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m-1\\x_1x_2=\frac{c}{a}=-m\end{cases}}\)
Ta có : \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\Leftrightarrow5x_1-x_1x_2\ge15-5x_2-36\)
\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\Leftrightarrow5m-5+m\ge-21\)
\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)kết hợp với đk vậy \(m>-1\)