K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

\(1;a,A=x^2+20x+101\)

\(A=x^2+2.10x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -10

Vậy Min A = 1 <=> x = -10

7 tháng 8 2018

\(\frac{1}{xy-x^2}-\frac{1}{y^2-xy}\)

\(=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}\)

\(=\frac{y}{xy\left(y-x\right)}-\frac{x}{xy\left(y-x\right)}\)

\(=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)

7 tháng 8 2018

a)  \(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

           \(=a^3+b^3+a^3-b^3=2a^3=VP\)

b)  \(VT=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

           \(=\left(a+b\right)\left[\left(a^2-2ab+b^2\right)+ab\right]\)

          \(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=VP\)

7 tháng 8 2018

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=a^3+b^3+a^3-b^3=2a^3\left(ĐPCM\right)\)

\(b,a^3+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)

\(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\left(ĐPCM\right)\)

7 tháng 8 2018

\(P\left(x\right)=1+x+x^2+...+x^{2018}\)

\(\Rightarrow P\left(1\right)=1+1+1+...+1=1.2019=2019\)

\(\Rightarrow P\left(-1\right)=1+\left(-1\right)+1+\left(-1\right)+...+1=1\)

\(\Rightarrow P\left(0\right)=1+0+0+...+0=1\)

\(\Rightarrow P\left(3\right)=1+3+3^2+...+3^{2018}\)

\(\Rightarrow3P\left(3\right)=3+3^2+...+3^{2019}\)

\(\Rightarrow2P\left(3\right)=3^{2019}-1\)

\(\Rightarrow P\left(3\right)=\frac{3^{2019}-1}{2}\)