K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

Trước khi xem lời giải bài toán này bạn nên xem qua video để hiểu cách biến đổi biểu thức 1 cách nhanh,gọn:Khai triển, rút gọn đa thức bằng máy tính casio . Bài này nhìn rồi mắt chứ rút gọn thì easy

a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\Leftrightarrow-\left(2x-8\right)\) ( Dùng máy tính casio để biến đổi cho nhanh nha =))

\(\Leftrightarrow-2x+8=0\Leftrightarrow8-2x=0\Leftrightarrow2x=8\Leftrightarrow x=4\)

b) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)

\(\Leftrightarrow\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)-2=0\)

\(\Leftrightarrow3x-42=0\Leftrightarrow3x=42\Leftrightarrow x=14\)

12 tháng 10 2018

Ta có :

\(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)

\(=\frac{a^2+2ab+b^2-c^2}{a^2+2ac+c^2-b^2}\)

\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)

\(=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\frac{a+b-c}{a-b+c}\)

12 tháng 10 2018

\(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{\left(a+b\right)^2-2ab-c^2+2ab}{\left(a+c\right)^2-2ac-b^2+2ac}.\)

\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)

\(=\frac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a+c-b\right)\left(a+b+c\right)}\)

\(=\frac{a+b-c}{a+c-b}\)

12 tháng 10 2018

1;\(A=x^3+y^3+z^3-3xyz\)

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(A=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(A=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

2;Nếu A = 0

Điều ngược lại đúng khi x^2+y^2+z^2-xy-yz-xz khác 0

12 tháng 10 2018

Ta đi chứng minh A phụ thuộc vào x+y+z

\(A=x^3+y^3+z^3-3xyz.\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Mà x^2+y^2+z^2-xy-yz-xz>0

nên  x+y+z =0 thì A=0

12 tháng 10 2018

Ta có:

\(2x^2-5xy+3y^2\)

\(=2x^2-2xy-3xy+3y^2=2x\left(x-y\right)-3y\left(x-y\right)\)

\(=\left(x-y\right)\left(2x-3y\right)\)

\(x^3-7x-6=x^3+1-7x-7\)

\(=\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)

12 tháng 10 2018

\(x^2+x=6\)

<=>  \(x^2+x-6=0\)

<=>   \(\left(x-2\right)\left(x+3\right)=0\)

tự lm tiếp

b)  \(6x^3+x^2=2x\)

<=>  \(6x^3+x^2-2x=0\)

<=>  \(x\left(6x^2+x-2\right)=0\)

<=>   \(x\left(2x-1\right)\left(3x+2\right)=0\)

tự giải ra

12 tháng 10 2018

a/\(x^2+x=6\)

\(x\left(x+1\right)=6\)

=> TH1 :x =0

     TH2 : x+1 =0  nên x = ( -1 )

b/\(6x^3+x^2=2x\)

\(6x^3+x^2-2x=0\)

\(2x\left(x-1\right)\left(x+1\right)=0\)

TH1 : 2x =0  nên x =0

TH2 : x-1 =0 nên x =1

TH2 : x+1 =0 nên x = (-1)

12 tháng 10 2018

a)  \(4x^2-4x+3=4x^2-4x+1+2\)

\(=\left(2x-1\right)^2+2>0\)\(\forall x\)

=> ko phân tích thành nhân tử được

b)  \(9x^2+6x-8=9x^2+12x-6x-8\)

\(=3x\left(3x+4\right)-2\left(3x+4\right)=\left(3x-2\right)\left(3x+4\right)\)

c)  \(3x^2-8x+4=3x^2-6x-2x+4\)

\(=3x\left(x-2\right)-2\left(x-2\right)=\left(3x-2\right)\left(x-2\right)\)

12 tháng 10 2018

a/\(4x^2-4x+3\)

\(=4x^2-1x-3x+3\)

\(=4x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-1\right)\left(4x-3\right)\)

b/\(9x^2+6x-8\)

\(=\text{(3x - 2)(3x + 4)}\)

c/\(3x^2-8x+4\)

\(\text{ =(3x^2 - 6x) - (2x - 4) }\)

\(\text{= 3x(x - 2) - 2(x - 2)}\)

\(\text{= (3x - 2)(x - 2)}\)

câu b:(x-1)(x+2)(x+3)(x+6) 
= (x-1)(x+6)(x+2)(x+3) 
= (x.x + 5.x - 6)(x.x + 5.x + 6) 
đặt x.x + 5.x = t 
=> (t -6)(t+6) 
= t.t - 36 
ta có: 
t.t >= 0 
suy ra t.t - 36 >= -36 
vậy min = -36 
dấu "=" xảy ra chỉ khi t.t = 0 
chỉ khi x.x + 5.x = 0 
chỉ khi x=0 hoặc x=-5

a) Ta có: A= 4x^2 + 4x + 11 = 4x^2 + 4x + 1 + 10

= (2x+1)^2 + 10 >= 10. A đạt giá trị nhỏ nhất = 10 khi x=-1/2 

12 tháng 10 2018

Mk lm câu c nhé, câu a và b bn tham khảo của ngô thế trường

\(c,C=x^2-2x+y^2-4y+7\)

\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Vì \(\left(x-1\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

\(2>0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\Rightarrow x=1\\\left(y-2\right)^2=0\Rightarrow y=2\end{cases}}\)

Vậy \(minC=2\Leftrightarrow x=1;y=2\)

hok tốt!

13 tháng 10 2018

\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(A=1.199+1.195+...+3.1\)

\(A=3+7+...+195+199\)

Tổng A có: \(\frac{199-3}{4}+1=50\)( số hạng)

\(\Rightarrow A=\frac{\left(199+3\right).50}{2}=5050\)

Mấy ý kia chốc về lm nốt 

13 tháng 10 2018

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^8-1\right)...\left(2^{64}+1\right)+1\)

\(B=2^{64}-1+1\)

\(B=2^{64}\)