Giải phương trình:
\(\sqrt{\left(5-2\sqrt{6}\right)^x}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow2ab+2bc+2ac=-2\)
\(\Rightarrow ab+bc+ac=-1\Rightarrow\left(ab+bc+ac\right)^2=1\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2abc\left(a+b+c\right)=4\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+0=4\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=4\)
Có \(\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\)
\(\Rightarrow a^4+b^4+c^4+2.4=4\)
Bn làm phần kết quả nhé
\(C=x^2-5y^2+x-3y\)
\(C=x^2-y^2-4y^2+x-3y\)
\(C=\left(x-y\right)\left(x+y\right)-4y^2+x-3y\)
\(C=x-y-4y^2+x-3y\)
\(C=-4y^2+2x-4y\)
\(C=-4y^2-4y-1+2x+1\)
\(C=-\left(2y-1\right)^2+2x+1\)
\(C=-\left(2y-x-y\right)^2+2x+x+y\)
\(C=-\left(y-x\right)^2+3x+y\)
bn làm tiếp nha
giá trị âm nhá
A = 2x - x2 - 2
= -(x2 - 2x + 2)
= -(x2 - 2x + 1 + 1)
= -(x2 - 2x + 1) - 1
= -(x - 1)2 - 1
Vì (x - 1)2 \(\ge0\forall x\)
=> -(x - 1)2 \(\le0\forall x\)
Vậy A = -(x - 1)2 - 1 \(\le1< 0\forall x\)
\(a=2x-x^2-2\)
\(a=-x^2+2x-2\)
\(a=-x^2+2x-1-1\)
\(a=-\left(x-1\right)^2-1\le-1\)
Dấu "=" xảy ra khi x = 1
Vậy x luôn âm
1) \(x^2-2xy+y^2-xz+yz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(xz-yz\right)\)
\(\Leftrightarrow\left(x-y\right)^2-z\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x-y-z\right)\)
2)\(x^2-y^2-x+y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)\)
\(a,x^2-2xy+y^2-xz+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
\(b,x^2-y^2-x+y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-1\right)\)
1) (a + b)2 - (a - b)2 = 4ab
VT = (a + b) ² - ( a - b ) ² = ( a² + 2ab + b²) - (a² - 2ab + b² ) = a² + 2ab + b² - a² + 2ab - b² = 4ab = VP (đpcm)
2) (a + b) ² + (a - b)² = 2(a² + b² )
VT = (a + b)² + (a - b)² = a² + 2ab + b² + a² - 2ab + b² = 2a² + 2b² = 2 (a² + b²) = VP (đpcm)
3) (a + b)² - 4ab = (a - b)²
VT = (a + b)² - 4ab = a² + 2ab + b² - 4ab = a² - 2ab + b² = (a - b)² = VP (đpcm)
4) (a - b)² + 4ab = (a + b)²
VT = (a - b)² + 4ab = a² - 2ab + b² + 4ab = a² + 2ab + b² = (a + b)² = VP (đpcm)
5) a3 + b3 = (a + b)3 - 3ab (a + b)
VP = (a + b)3 - 3ab (a + b) = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = a3+ b3 = VT (đpcm)
6) a3 - b3 = (a - b)3 + 3ab (a - b)
VP = (a - b)3 + 3ab (a - b) = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3- b3 = VT (đpcm)
7) a3 + b3 + c3 - 3abc = ( a + b + c) ( a² + b² + c² - ab - bc - ac )
VP = (a + b + c) (a2 + b2 + c2 - ab - bc - ac)
= a3 + ab² + ac² - a²b - abc - a²c + a²b + b3 + bc² - ab² - b²c - abc + a²c + b²c + c3 - abc - bc² - ac²
= a3 + b3 + c3 - 3abc = VT (đpcm)
câu 7 mk sửa đề lại xíu nhea !!!
có j sai xót mong m.n bỏ qa cho ☺♥