Cho a+b+c=0 CMR:\(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\left(x-4\right)\left(x^2+4x+16\right)-x\left(x^2-6\right)=2\)
\(\Rightarrow x^3-64-x^3+6x=2\)
\(\Rightarrow-64+6x=2\)
\(\Rightarrow6x=66\Rightarrow x=11\)

\(\left(27x^3+1\right):\left(9x^2-3x+1\right)=\left(3x+1\right)\left(9x^2-3x+1\right):\left(9x^2-3x+1\right)=3x+1\)
\(\left(x^3+3x^2+3x+1\right):\left(x+1\right)=\left(x+1\right)^3:\left(x+1\right)=\left(x+1\right)^2\)

I/ II,
1,community 1,A.An->The
2,culture 2,B.to communicate->communicating
3,northern 3,B.well->better
4,terrace 4,A.What->Which
5,B.collect->collecting
Từ a+b+c=0 có b+c =-a
Suy ra (b+c)^2 = (-a)^2 hay b^2 + c^2 +2bc = a^2
hay b^2 + c^2 -a^2 = -2bc
Suy ra (b^2 + c^2 - a^2)^2 = (-2bc)^2
<=> b^4 + c^4 + a^4 +2b^2.c^2 - 2a^2.b^2 - 2a^2.c^2 = 4b^2.c^2
<=> a^4 + b^4 + c^4 = 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2
<=> 2(a^4 + b^4 + c^4) =a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2
<=> 2(a^4 + b^4 + c^4 ) =(a^2 + b^2 + c^2) ( Đpcm)
Ta có: \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2.\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=\left[-2.\left(ab+bc+ca\right)\right]^2\)
\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)\)
\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+a^4+b^4+c^4\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2.\left(a^4+b^4+c^4\right)\)
đpcm
Tham khảo nhé~