Tìm x
x^2 - 4x = 0
4x^2 - 9 = 0
2x ( x - 3 ) + 5( x - 3 ) = 0
x ( 2x + 9 )- 4x - 18
( 2x - 1 )^2 - ( x + 2 )^2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : \(x^2-6x+9-y^2\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3+y\right)\left(x-3-y\right)\)
\(A=x^3+3xy^2-9+y\left(3x^2+y^2\right)\)
\(=x^3+3x^2y+3xy^2+y^3-9\)
\(=\left(x+y\right)^3-9\)
\(=\left(1,95+0,05\right)^3-9=2^3-9=-1\)
\(B=x^2+\frac{1}{2}x+\frac{1}{16}\)
\(=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2\)
\(=\left(x+\frac{1}{4}\right)^2\)
\(=\left(9,75+0,25\right)^2=10^2=100\)
x2+4x+3
=x2+x+3x+3
=x(x+1)+3(x+1)
=(x+1)(x+3)
k cho mk nhé
Đặt \(A=\frac{3}{2}x^2+x+1\)
\(6A=9x^2+6x+6\)
\(6A=\left(9x^2+6x+1\right)+5\)
\(6A=\left(3x+1\right)^2+5\ge5\)
\(A=\frac{\left(3x+1\right)^2+5}{6}\ge\frac{5}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(3x+1\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-1}{3}\)
Vậy GTNN của \(A\) là \(\frac{5}{6}\) khi \(x=\frac{-1}{3}\)
Chúc bạn học tốt ~
2x3-18x=0
->2x(x2-9)=0
->2x(x-3)(x+3)=0
->\(\hept{\begin{cases}2x=0\\\left(x-3\right)\left(x+3\right)=0\end{cases}}\)
->x=0
\(\hept{\begin{cases}x-3=0\\x+3=0\end{cases}->\hept{\begin{cases}x=3\\x=-3\end{cases}}}\)
a) \(x^2-4x=0\)
\(x\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
b) \(4x^2-9=0\)
\(\left(2x\right)^2-3^2=0\)
\(\left(2x+3\right)\left(2x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}\)
c) \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)
d) \(x\left(2x+9\right)-4x-18=0\)
\(x\left(2x+9\right)-2\left(2x+9\right)=0\)
\(\left(2x+9\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)
e) \(\left(2x-1\right)^2-\left(x+2\right)^2=0\)
\(\left(2x-1-x-2\right)\left(2x-1+x+2\right)=0\)
\(\left(x-3\right)\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}}\)
\(x^2-4x=0\)
\(x.\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\Leftrightarrow x=4\end{cases}}\)
\(4x^2-9=0\)
\(2^2x^2-9=0\)
\(\left(2x\right)^2-9=0\)
\(\left(2x\right)^2-3^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x\right)^2=\left(-3\right)^2\\\left(2x\right)^2=3^2\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\2x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}}\)
\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\cdot\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0+3\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)
\(x\left(2x+9\right)-4x-18=0\)
\(x\left(2x+9\right)-\left(4x+18\right)=0\)
\(x\left(2x+9\right)-\left(2\cdot2x+2\cdot9\right)=0\)
\(x\left(2x+9\right)-2.\left(2x+9\right)=0\)
\(\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-9\\x=0+2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)
\(\left(2x-1\right)^2-\left(x+2\right)^2=0\)
\(\Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=x+2\\2x-1=-x+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=3+x\\2x=-x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-x=3\\2x+x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}}}\)
\(\)