Chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.

\(\left(x+4\right)\left(x-7\right)-\left(x+5\right)^2=5\)
\(\Rightarrow x^2-3x-28-\left(x^2+10x+25\right)=5\)
\(\Rightarrow-13x-53=5\)
\(\Rightarrow-13x=58\Rightarrow x=-\frac{58}{13}\)
\(\left(x+4\right)\left(x-7\right)-\left(x+5\right)^2=5\)
\(x^2+4x-7x+-28-x^2-10x-25=5\)
\(-13x-53=5\)
\(-13x=58\)
\(\Rightarrow x=-\frac{58}{13}\)
Vậy \(x=-\frac{58}{13}\)

1) x^2 + xy + y^2 + 1 > 0 với mọi x, y;
ta có x^2+xy+y^2+1=(x^2+2x.y/2+y^2/4)+-y^2/4+y^2+1=(x+y/2)^2+3y^2/4+1
ta có (x+y/2)^2>=0 với mọi x, y
3y^2/4>=0 với mọi y
=>(x+y/2)^2+3y^2/4+1>0 với mọi x, y

Hình như đề là phân tích đa thức thành nhân tử thì phải? Bạn không ghi rõ đề nên mình không biết chính xác yêu cầu.
Nếu đúng là thế thì: Giải
Nhờ sự trợ giúp đắc lực của máy tính casio ta dễ thấy: \(\left(x-2\right)^3-3x\left(x^2+2x+4\right)=-\left(2x^3+12x^2+8\right)=-2x^3-12x^2-8\)
Ta có: \(-2x^3-12x^2-8=-2\left(x^3+6x^2+4\right)\)


a) \(x^2-4x=0\)
\(x\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
b) \(4x^2-9=0\)
\(\left(2x\right)^2-3^2=0\)
\(\left(2x+3\right)\left(2x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}\)
c) \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)
d) \(x\left(2x+9\right)-4x-18=0\)
\(x\left(2x+9\right)-2\left(2x+9\right)=0\)
\(\left(2x+9\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)
e) \(\left(2x-1\right)^2-\left(x+2\right)^2=0\)
\(\left(2x-1-x-2\right)\left(2x-1+x+2\right)=0\)
\(\left(x-3\right)\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}}\)
\(x^2-4x=0\)
\(x.\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\Leftrightarrow x=4\end{cases}}\)
\(4x^2-9=0\)
\(2^2x^2-9=0\)
\(\left(2x\right)^2-9=0\)
\(\left(2x\right)^2-3^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x\right)^2=\left(-3\right)^2\\\left(2x\right)^2=3^2\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\2x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}}\)
\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\left(x-3\right)\cdot\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0+3\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)
\(x\left(2x+9\right)-4x-18=0\)
\(x\left(2x+9\right)-\left(4x+18\right)=0\)
\(x\left(2x+9\right)-\left(2\cdot2x+2\cdot9\right)=0\)
\(x\left(2x+9\right)-2.\left(2x+9\right)=0\)
\(\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-9\\x=0+2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)
\(\left(2x-1\right)^2-\left(x+2\right)^2=0\)
\(\Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=x+2\\2x-1=-x+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=3+x\\2x=-x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-x=3\\2x+x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}}}\)
\(\)
Gọi 3 STN liên tiếp là \(a-1,a,a+1\)
Ta có:
\(a^3+\left(a-1\right)^3+\left(a+1\right)^3\)
\(=a^3+a^3-3a^2+3a-1+a^3+3a^2+3a+1\)
\(=3a^3+6a\)
\(=3\left(a^3-a\right)+9a\)
\(=3a\left(a-1\right)\left(a+1\right)+9a⋮9\)
Có gì sai thì bạn bảo mình nhé.