Ba kho có tất cả 145 tấn thóc.Số thóc kho thứ nhất ít hơn tổng số thóc của kho thứ hai và kho thứ ba 45 tấn.Kho thứ hai ít hơn kho thứ ba 13 tấn.tính số thóc của mỗi kho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\widehat{HIA}+\widehat{HAI}=90^0\)(ΔHAI vuông tại H)
\(\widehat{KIB}+\widehat{KBI}=90^0\)(ΔKIB vuông tại K)
mà \(\widehat{HIA}=\widehat{KIB}\)(hai góc đối đỉnh)
nên \(\widehat{HAI}=\widehat{KBI}\)
=>\(x=40^0\)
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
=>\(x=\widehat{EBD}=\widehat{ECD}=35^0\)
c: Ta có: \(\widehat{IMP}+\widehat{IPM}=90^0\)(ΔMIP vuông tại I)
\(\widehat{MPN}+\widehat{MNP}=90^0\)(ΔMNP vuông tại M)
Do đó: \(x=\widehat{IMP}=\widehat{N}=60^0\)
Bài 2:
c: \(C=27x^3-27x^2y+9xy^2-y^3-121\)
\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y+3\cdot3x\cdot y^2-y^3-121\)
\(=\left(3x-y\right)^3-121=7^3-121=343-121=222\)
Bài 3:
a: \(x^2-4+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
=(x-2)(x+2+x-2)
=2x(x-2)
b: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-1-y\right)\left(x-1+y\right)\)
c: \(x^3-4x^2-12x+27\)
\(=\left(x^3+27\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
d: \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)^2-5\left(x^2+x\right)+3\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-5\right)+3\left(x^2+x-5\right)\)
\(=\left(x^2+x-5\right)\left(x^2+x+3\right)\)
Câu 8:
\(x:4\times36-x:7\times28+x:4\times20=180\)
=>9x-4x+5x=180
=>10x=180
=>x=180:10=18
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
\(\widehat{ADH}=\widehat{CBK}\)(hai góc so le trong, AD//CB)
Do đó: ΔAHD=ΔCKB
=>AH=CK
Ta có: AH\(\perp\)BD
CK\(\perp\)BD
Do đó: AH//CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó:AHCK là hình bình hành
b: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
ta có: AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của HK
c: Xét tứ giác AMCN có
AM//CN
AN//CM
Do đó: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
=>M,O,N thẳng hàng
Để hệ có nghiệm duy nhất thì \(\dfrac{a+1}{1}\ne\dfrac{-a}{a}=-1\)
=>\(a+1\ne-1\)
=>\(a\ne-2\)
\(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)x-ay+x+ay=5+a^2+4a\\x+ay=a^2+4a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(a+2\right)=a^2+4a+5\\ay=a^2+4a-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{a^2+4a+5}{a+2}\\ay=a^2+4a-\dfrac{a^2+4a+5}{a+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{a^2+4a+5}{a+2}\\ay=\dfrac{\left(a+2\right)\left(a^2+4a\right)-a^2-4a-5}{a+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{a^2+4a+5}{a+2}\\y=\dfrac{a^3+4a^2+2a^2+8a-a^2-4a-5}{a\left(a+2\right)}=\dfrac{a^3+5a^2+4a-5}{a\left(a+2\right)}\end{matrix}\right.\)
Để x,y nguyên thì \(\left\{{}\begin{matrix}a^2+4a+5⋮a+2\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a^2+4a+4+1⋮a+2\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1⋮a+2\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a+2\in\left\{1;-1\right\}\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a\in\left\{-1;-3\right\}\\a^3+5a^2+4a-5⋮a^2+2a\end{matrix}\right.\Leftrightarrow a=-1\)
\(\left|\dfrac{4}{3}x-\dfrac{1}{4}\right|>=0\forall x\)
=>\(A=\left|\dfrac{4}{3}x-\dfrac{1}{4}\right|-\dfrac{2}{11}>=-\dfrac{2}{11}\forall x\)
Dấu '=' xảy ra khi \(\dfrac{4}{3}x-\dfrac{1}{4}=0\)
=>\(\dfrac{4}{3}x=\dfrac{1}{4}\)
=>\(x=\dfrac{1}{4}:\dfrac{4}{3}=\dfrac{3}{16}\)
a:
b: Phương trình hoành độ giao điểm là:
-2x-4=x-1
=>-2x-x=-1+4
=>-3x=3
=>x=-1
Thay x=-1 vào y=x-1, ta được:
y=-1-1=-2
Vậy: Tọa độ giao điểm là A(-1;-2)
\(\left|6x+22\right|>=0\forall x;\left(y-21\right)^2>=0\forall y\)
Do đó: \(\left|6x+22\right|+\left(y-21\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}6x+22=0\\y-21=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{11}{3}\\y=21\end{matrix}\right.\)
Số thóc ở kho thứ nhất là:
(145-45):2=50(tấn)
Số thóc của hai kho còn lại là 50+45=95(tấn)
Số thóc của kho thứ hai là (95-13):2=82:2=41(tấn)
Số thóc của kho thứ ba là 41+13=54(tấn)
Số thóc ở kho thứ nhất là:
(145 - 45) : 2 = 50 (tấn)
Số thóc của hai kho còn lại là 50 + 45 = 95 (tấn)
Số thóc của kho thứ hai là (95-13) : 2 = 82 : 2 = 41 (tấn)
Số thóc của kho thứ ba là 41 + 13 = 54 (tấn)