K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

=>A=x3-3x2+5x2-15x+9x-27

lấy x-3 chung

=>A=(x2+5x+9)(x-3)


 

10 tháng 8 2018

\(x^3+2x^2-3x-27\)

\(=x^3-3x^2+5x^2-15x+9x-27\)

\(=x^2\left(x-3\right)+5x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x^2+5x-9\right)\left(x-3\right)\)

10 tháng 8 2018

Quy đồng

10 tháng 8 2018

Bạn vẽ hình ra được ko?

10 tháng 8 2018

Kẻ đường cao thứ 2, kẻ 2 đường chéo rồi Py-ta-go

11 tháng 8 2018

gọi hình thang vuông là ABCD

nên AB+CD=a

và DC-AB=b

ta có \(\Delta ADC\)vuông ở D 

\(\Rightarrow\)\(AD^2+DC^2=AC^2\left(1\right)\)

Xét \(\Delta DAB\)vuông ở A 

\(\Rightarrow DA^2+AB^2=DB^2\)

Từ (1) và (2) suy ra 

\(AC^2-DB^2=\left(AD^2+DC^2\right)-\left(DA^2+AB^2\right)\)

                        \(=DC^2-AB^2\)

                        \(=\left(DC-AB\right)\times\left(DC+AB\right)\)

                         =b\(\times\)a    

10 tháng 8 2018

Ta có:\(x^2=1-y^2-z^2\le1\Rightarrow-1\le x\le1\)

Tương tự:\(-1\le y\le1;-1\le z\le1\)

Lại có:\(x^3+y^3+z^3=x^2+y^2+z^2\)

\(\Leftrightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)

Vì \(x\le1;y\le1;z\le1\) nên \(x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)

Dấu "=" xảy ra khi \(\left(x,y,z\right)=\left(0,0,1\right)\) và các hoán vị

\(\Rightarrow S=2020\)