Tam giác ABC có Â = 50o, D thuộc AC.Lấy E trên AB sao cho BE=CD.Gọi M,I,K là trung điểm BC,BD,EC.Tính hóc MIK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(\left(x+2\right)\left(x+4\right)\left(x+3\right)^2-12=\left(x^2+6x+8\right)\left(x^2+6x+9\right)-12\)
đặt \(x^2+6x+8=y=>y\left(y+1\right)-12=y^2+2.\frac{1}{2}y+\frac{1}{4}-\frac{1}{4}-12=\left(y+\frac{1}{2}\right)^2-12,25=\left(y+12,75\right)\left(y-11,75\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)-10\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+15\right)-10\)
Đặt \(x^2+8x+12=t\)
Khi đó ta có:
\(A=t\left(t+3\right)-10\)
\(=t^2+3t-10\)
\(=\left(t-2\right)\left(t+5\right)\)
Thay trở lại ta có:
\(A=\left(x^2+8x+10\right)\left(x^2+8x+17\right)\)
b) \(B=x\left(2x+1\right)\left(2x+3\right)\left(4x+8\right)-18\)
\(=\left(4x^2+8x\right)\left(4x^2+8x+3\right)-18\)
Đặt \(4x^2+8x=t\)
Khi đó ta có:
\(B=t\left(t+3\right)-18=t^2+3t-18=\left(t-3\right)\left(t+6\right)\)
Thay trở lại ta có:
\(B=\left(4x^2+8x-3\right)\left(4x^2+8x+6\right)=2\left(4x^2+8x-3\right)\left(2x^2+4x+3\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+1\right)\left(x+3\right)\left(x+4\right)\left(x+6\right)-7\)
\(=\left\{\left(x+1\right)\left(x+6\right)\right\}.\left\{\left(x+3\right)\left(x+4\right)\right\}-7\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+12\right)-7\) \(\left(1\right)\)
đặt \(x^2+7x+9=a\)
<=> \(\left(1\right)=\left(a-3\right)\left(a+3\right)-7\)
\(=a^2-16\)
\(=\left(a-4\right)\left(a+4\right)\)
hay\(\left(1\right)=\) \(\left(x^2+7x+9-4\right)\left(x^2+7x+9+4\right)\)
\(=\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)
những câu còn lại cũng nhóm đầu với cuối , hai cái giữa với nhau , xong làm tương tự câu trên
học tốt
a) (x + 1)(x + 3)(x + 4)(x + 6) - 7
= (x + 1)(x + 6) (x + 3)(x + 4) - 7
= (x2 + 7x + 6)(x + 7x + 12) - 7
Đặt t = x2 + 7x + 6
Ta có : t(t + 6) - 7
= t2 + 6t - 7
= t2 + 6t + 9 - 16
= (t + 3) - 16
= (t + 3 - 4)(t + 3 + 4)
= (t - 1)(t + 7)
Nên :
Pt = (x2 + 7x + 6 - 1)(x2 + 7x + 6 + 7)
= (x2 + 7x + 5)(x2 + 7x + 13)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=9x^2+25y^2-6x+10y-7\)
\(B=\left(9x^2-6x+1\right)+\left(25y^2+10y+1\right)-9\)
\(B=\left(3x-1\right)^2+\left(5y+1\right)^2-9\ge-9\)
Vậy GTNN của B là -9 khi x = \(\frac{1}{3}\); y = \(-\frac{1}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=-3x^2-4x+7=-3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{25}{3}=-\left(x+\frac{2}{3}\right)^2+\frac{25}{3}\le\frac{25}{3}\)
Vậy GTLN của C là \(\frac{25}{3}\)khi x = \(-\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=x^2-2xy+2xy+2y^2+2x-10y+17\)
\(D=\left(x^2+2x+1\right)+2\left(y^2-5y+\frac{25}{4}\right)+\frac{7}{2}\)
\(D=\left(x+1\right)^2+2\left(y-\frac{5}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)
Vậy GTNN của D là \(\frac{7}{2}\)khi x = -1; y = \(\frac{5}{2}\)