Câu 1: (3,0 điểm). Giải các phương trình:
a) \(3x+5=2x+2\).
b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).
c) \(\left|x-3\right|+1=2x-7\).
Câu 2: (2,0 điểm).
a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).
b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.
Câu 3: (1,0 điểm). Một người đi xe máy từ A đến B với vận tốc 60 km/h, rồi quay trở về A với vận tốc 50 km/h. Biết rằng thời gian đi từ A đến B ít hơn thời gian lúc về là 48 phut. Tính quãng đường từ A đến B.
Câu 4: (3,0 điểm). Cho \(\Delta ABC\)nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh rằng \(\Delta AEB~\Delta AFC\). Từ đó suy ra: \(AF.AB=AE.AC\).
b) Chứng minh: \(HE.HB=HF.HC\); \(\widehat{BEF}=\widehat{BCF}\).
c) Chứng minh: \(\frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA}=1\).
Câu 5: (1,0 điểm).
a) Chứng minh: Với mọi a, b ta có: \(a^2+b^2+1\ge ab+a+b\).
b) Giải phương trình: \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\).
Câu 1: (3,0 điểm). Giải các phương trình:
a) \(3x+5=2x+2\).
\(\Leftrightarrow3x-2x=2-5\).
\(\Leftrightarrow x=-3\).
Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).
b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).
\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).
\(\Rightarrow x-5=4x-8+3x+3\).
\(\Leftrightarrow x-4x-3x=-8+3+5\).
\(\Leftrightarrow-6x=0\).
\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).
Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).
c) \(\left|x-3\right|+1=2x-7\)
- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:
\(x-3+1=2x-7\).
\(\Leftrightarrow x-2=2x-7\).
\(\Leftrightarrow x-2x=-7+2\).
\(\Leftrightarrow-x=-5\).
\(\Leftrightarrow x=5\)(thỏa mãn).
- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:
\(3-x+1=2x-7\).
\(\Leftrightarrow4-x=2x-7\).
\(-x-2x=-7-4\).
\(\Leftrightarrow-3x=-11\).
\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).
Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).
Câu 2: (2,0 điểm).
a) \(5x-5>x+15\).
\(\Leftrightarrow5x-x>15+5\).
\(\Leftrightarrow4x>20\).
\(\Leftrightarrow x>5\).
Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).
b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).
\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).
\(\Leftrightarrow40-20x>36-3x\).
\(\Leftrightarrow-20x+3x>36-40\).
\(\Leftrightarrow-17x>-4\).
\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).
\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).
Vậy \(x=0\).