một ô tô đi 2/3 quãng đường AB với vận tốc 40km/h rồi đi nốt quãng đường còn lại với vận tốc 60km/h. Lúc về ô tô đi với vận tốc không đổi trên cả quãng đường và bằng thời gian đi. Tính vận tốc lúc về của ô tô.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{AOC}+\widehat{AOB}=180^0\)(hai góc kề bù)
=>\(\widehat{AOC}+124^0=180^0\)
=>\(\widehat{AOC}=56^0\)
b:
\(3^2.3^x=3^5\)
\(3^{x+2}=3^5\)
\(\Rightarrow x+2=5\)
\(x=5-2=3\)
\(S=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{99^2}\right)\)
\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{99}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{98}{99}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}\)
\(=\dfrac{1}{99}\cdot\dfrac{100}{2}=\dfrac{50}{99}\)
giải
trung bình mỗi ngày bạn trồng được số cây là:
(24+32):2=28(cây)
đáp số :28 cây
Ta biết:\(\dfrac{11}{17}\)<\(\dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\)(\(a,b\in N\))
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
⇒\(\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\Rightarrow a=8k++1\)
khi đó\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)⇒\(\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
11.(9k+5)<17.(8k+1)⇔k>129.(8k+1)<23.(9k+5)⇔k<4⇒1<k<4
⇒kϵ{2;3}
k=2=>a=17
b=23
k=3=>a=25
b=32
kết luận:(a,b) là:(17,23);(25,32)
Số nguyên tố lẻ nhỏ nhất là số 3
=>a=3
Số chục là số nguyên tố chẵn
=>b=2
Số đơn vị là số nguyên tố duy nhất có tận cùng bằng 5
=>Hàng đơn vị là c=5
vậy: Số cần tìm là 325
Lời giải:
$PQ=AP$ và $P$ nằm giữa $A,Q$ nên $P$ là trung điểm $AQ$
$\Rightarrow PQ=AQ:2=8:2=4$ (cm)
$Q$ nằm giữa $AB$ nên:
$AQ+QB = AB$
$QB=AB-AQ=12-8=4$ (cm)
b.
Ta thấy $PQ=QB=4$ mà $Q$ nằm giữa $P,B$ nên $Q$ là trung điểm $PB$
Check lại :
\(\dfrac{3}{19}.\dfrac{-5}{7}+\dfrac{-18}{19}.\dfrac{3}{14}+\dfrac{6}{19}\)
\(=\dfrac{3}{19}.\dfrac{-5}{7}+\dfrac{3}{19}.\dfrac{-18}{14}+\dfrac{6}{19}\)
\(=\dfrac{3}{19}.\left(\dfrac{-5}{7}+\dfrac{-18}{14}\right)+\dfrac{6}{19}\)
\(=\dfrac{3}{19}.-2+\dfrac{6}{19}\)
\(=\dfrac{-6}{19}+\dfrac{6}{19}\)
\(=0\)
\(\dfrac{3}{19}.\dfrac{-5}{7}+\dfrac{-18}{19}.\dfrac{3}{14}+\dfrac{6}{19}\)
\(=\dfrac{3}{19}.\dfrac{-5}{7}+\dfrac{3}{19}.\dfrac{-18}{14}+\dfrac{6}{9}\)
\(=\dfrac{3}{19}.\dfrac{-5}{7}+\dfrac{3}{19}.\dfrac{-9}{7}+\dfrac{2}{3}\)
\(=\dfrac{3}{19}.\left(\dfrac{-5}{7}+\dfrac{-9}{7}\right)+\dfrac{2}{3}\)
\(=\dfrac{3}{19}.-2+\dfrac{2}{3}\)
\(=\dfrac{-6}{19}+\dfrac{2}{3}\)
\(=\dfrac{20}{57}\)
Đây là toán nâng cao chuyên đề chuyển động, cấu trúc thi chuyên, thi học sinh giỏi. Hôm nay Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp lập phương trình như sau:
Giải:
Gọi quãng đường AB có độ dài là \(x\) (km); \(x\) > 0
Thời gian ô tô đi \(\dfrac{2}{3}\) quãng đường đầu là: \(\dfrac{2}{3}\)\(x\) : 40 = \(\dfrac{1}{60}\)\(x\) (giờ)
Quãng đường còn lại là: \(x\) - \(\dfrac{2}{3}\)\(x\) = \(\dfrac{1}{3}\)\(x\) (km)
Thời gian ô tô đi quãng đường còn lại là;
\(\dfrac{1}{3}\)\(x\) : 60 = \(\dfrac{1}{180}x\) (giờ)
Vì thời gian đi bằng thời gian về nên thời gian về của người đó là;
\(\dfrac{1}{60}x+\dfrac{1}{180}x\) = \(\dfrac{1}{45}\)\(x\) (giờ)
Vận tốc của người đó khi về là:
\(x\) :( \(\dfrac{1}{45}\)\(x\)) = 45 (km/h)
Kết luận vận tốc khi về của người đó là 45 km/h